## For General Purpose

## 2/3 Port Valve

## **Process Valve/Series VN**

- ■The cylinder operation by external pilot air
- ■Can be operated with pressure differential zero.
- ■Wide variations

### Series VNA

For controlling pneumatic systems or air-hydro circuits. A balance poppet that enables air to flow forward or backward.



#### Series VNB

For controlling various fluids

Can operate with a wide range of fluids, such as air, water, oil, gas, vacuum, etc., by selecting the body material and the seal material.




## Series VNC

For controlling the cutting oils and coolants used in machine tools.

Metal seals are used for preventing foreign matter such as cutting chips from entering.

Maximum operating pressure: 0.5MPa, 1MPa



#### Series VNH

For controlling the high pressure cutting oils and coolants used in machine tools.

Maximum operating pressure: 3.5MPa, 7MPa

## Series VND

For steam control PTFE seal adopted With indicator (Option)





## Series VN

### **Process Valve**

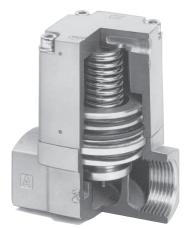
|            | Series      |            | Process valve Process Series VNA Series |           | ocess va<br>eries <b>VN</b> |       |           | Coolant valve Series VNC  Coolant valve for high pressure Series VNH |            | Steam valve<br>Series VND |                      |             |          |
|------------|-------------|------------|-----------------------------------------|-----------|-----------------------------|-------|-----------|----------------------------------------------------------------------|------------|---------------------------|----------------------|-------------|----------|
|            | Valve Style |            | N.C.                                    | N.O.      | C.O.                        | N.C.  | N.O.      | C.O.                                                                 | N.C.       | N.O.                      | N.C.                 | N.C.        | N.O.     |
| О          | Water       |            |                                         | _         | _                           | •     | •         | •                                                                    | _          |                           | _                    | _           |          |
| fluid      | Air         |            | •                                       | •         | •                           | •     | •         | •                                                                    | _          |                           | _                    | _           | _        |
| e          | Oil         |            | •                                       | •         | •                           | •     | •         | •                                                                    | •          | •                         | •                    | _           | _        |
| Applicable | Low vacuur  | n (1 Torr) |                                         |           | _                           | •     | •         | •                                                                    | _          | _                         | _                    |             |          |
| 悥          | Coolant     |            | _                                       |           | _                           | _     | _         | _                                                                    | •          | •                         | •                    | _           |          |
| ¥          | Steam       |            |                                         |           |                             |       |           |                                                                      |            |                           | _                    | •           |          |
|            |             | 1/8        | •                                       | •         | •                           | •     | •         | •                                                                    | •          | •                         | _                    | •           | •        |
|            |             | 1/4        | •                                       | •         | •                           | •     | •         | •                                                                    | •          | •                         | _                    | •           | •        |
|            | -           | 3/8        | •                                       | •         | •                           | •     | •         | •                                                                    | •          | •                         | •                    | •           | •        |
|            | Rc          | 1/2        | •                                       | •         | •                           | •     | •         | •                                                                    | •          | •                         | •                    | •           | •        |
|            | G<br>NPT    | 3/4        | •                                       | •         | •                           | •     | •         | •                                                                    | •          | •                         | •                    | •           |          |
| size       | NPTF        | 1          | •                                       | •         | •                           | •     | •         | •                                                                    | •          | •                         | •                    | •           |          |
| t<br>Si    |             | 11/4       | •                                       | •         | •                           | •     | •         | •                                                                    | •          | •                         | _                    | •           | •        |
| Port       |             | 11/2       | •                                       | •         | •                           | •     | •         | •                                                                    | •          | •                         | _                    | •           | •        |
|            |             | 2          |                                         | •         | •                           | •     | •         | •                                                                    | •          | •                         | _                    | •           |          |
|            | Page        |            | P.4.2-                                  | 3 to P.4. | .2-10                       | P.4.2 | -11 to P. | 4.2-18                                                               | P.4.2-19 t | P.4.2-26                  | P.4.2-27 to P.4.2-32 | P.4.2-33 to | P.4.2-40 |

# 2 Port Valve for Comressed Air and Air-hydro Circuit Control **Process Valve**

# Series VNA

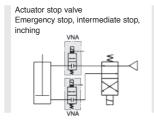
### **Universal 2 Port Valve**

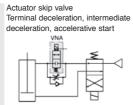
Exclusively for air pressure system and air-hydro circuit control

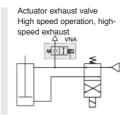

The cylinder operation by external pilot air

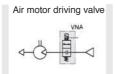
The balance poppet permits normal and reverse flow.

Operation from 0 MPa is possible

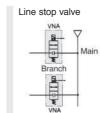

Wide variations

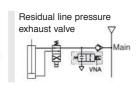

N.C., N.O., C.O., are available. Screw-in styles, 6A to 50A, are standardized.





#### **Compressed Air**

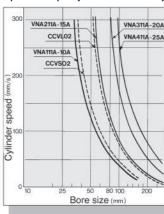
Air pressure circuit: Application examples



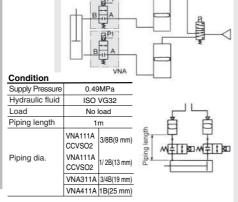








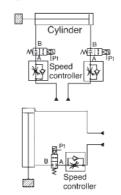


## Air-hydro

#### Operation capacity when used in air-hydro units



This series can supplement the capacity of conventional air-hydro valve units. They are suited to operate large bore cylinders as well as to simultaneously operate mutliple cylinders and suspend their operation. Thus they can be used in the same as the convetional air-hydro units

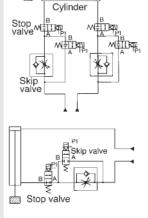
## Air-hydro circuit: Application example Basic circuit




Refer to Best Pneumatics 2 for further information on air-hydro.

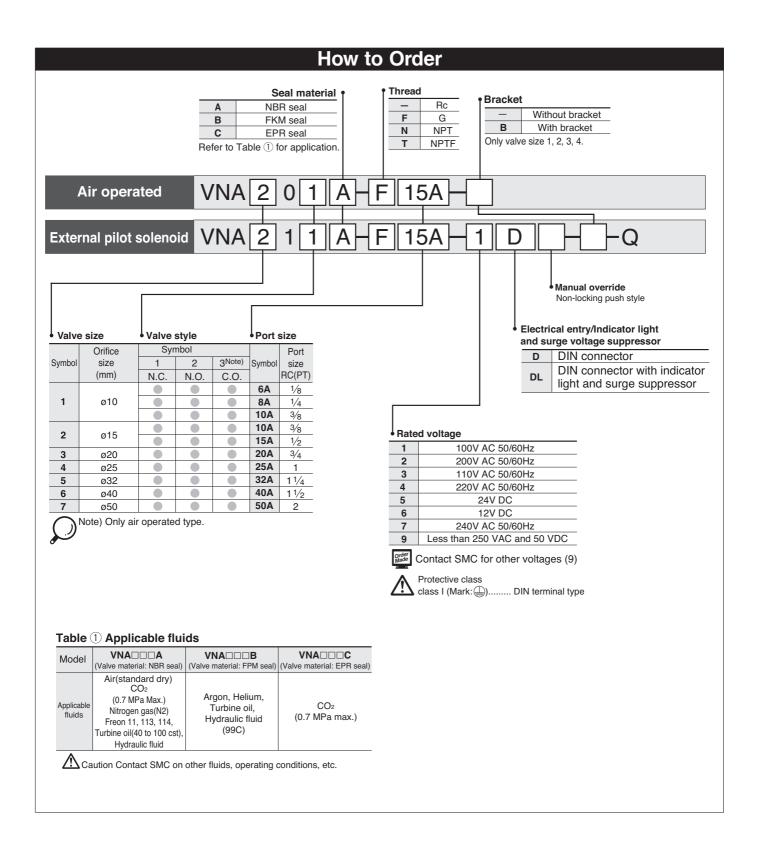
#### 

## When speed controller is mounted

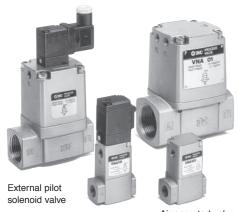

Connect a speed controller (Series AS etc.) to A port (cast in body A)of VNA\*11 (in order to protect the speed control valve from surges when cylinder operation is suspended, thus improving stopping accuracy)



#### 


#### Skip valve function

Combination of 2 or more valves of Series VNA provides a skip valve function. Connect the skip valve to the A port side of a stop valve as in the case of the speed control valve.






## **VNA**







Air operated valve

### **Symbol**

| <del></del>             |                 |               |               |
|-------------------------|-----------------|---------------|---------------|
| Valve                   | N.C.            | N.O.          | C.O.          |
| Style                   | Normally closed | Normally open | Double acting |
|                         | VNA□01          | VNA□02        | VNA□03        |
| Air operated            | P1 A            | P2 A B        | P1 A     B P2 |
|                         | VNA□11          | VNA□12        |               |
| External pilot solenoid | P1 A   B        | P1            |               |

#### Model

|             | Port Size | Orifice size | Flo      | ow rate                 | Weight (kg)  |          |
|-------------|-----------|--------------|----------|-------------------------|--------------|----------|
| Model       | Rc(PT)    | ø (mm)       | Ne/min   | Effective area<br>(mm²) | Air operated | Solenoid |
| VNA1□□□-6A  | 1/8       |              | 687.05   | 13                      |              |          |
| VNA1□□□-8A  | 1/4       | 10           | 1275.95  | 23                      | 0.1          | 0.2      |
| VNA1□□□-10A | 3/8       |              | 1963.00  | 35                      |              |          |
| VNA2□□□-10A | 3/8       | 15           | 3729.70  | 70                      | 0.3          | 0.4      |
| VNA2□□□-15A | 1/2       | 15           | 4907.50  | 90                      | 0.3          |          |
| VNA3□□□-20A | 3/4       | 20           | 7852.00  | 140                     | 0.5          | 0.6      |
| VNA4□□□-25A | 1         | 25           | 11778.00 | 220                     | 0.8          | 0.9      |
| VNA5□□□-32A | 11/4      | 32           | 17667.00 | 320                     | 1.3          | 1.4      |
| VNA6□□□-40A | 11/2      | 40           | 27482.00 | 500                     | 2.1          | 2.2      |
| VNA7□□□-50A | 2         | 50           | 42204.00 | 770                     | 3.1          | 3.2      |

## **Valve Specifications**

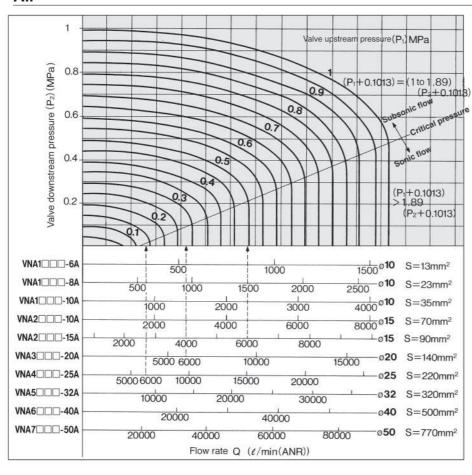
| Fluid             |                                         | Refer to table ① on page 4.2-4.                                  |  |  |
|-------------------|-----------------------------------------|------------------------------------------------------------------|--|--|
| Fluid             | VNA□□□A                                 | −5 to 60°C <sup>(1)</sup>                                        |  |  |
|                   | \A\A\B\B\B\B\B\B\B\B\B\B\B\B\B\B\B\B\B\ | −5 to 99°C <sup>(1)</sup>                                        |  |  |
| temperature       | VNA□□□B/□□□C                            | (Only air operated)                                              |  |  |
| Ambient temper    | ature                                   | -5 to 50°C (Air operated: 60°C) (1)                              |  |  |
| Proof pressure    |                                         | 1.5MPa                                                           |  |  |
| Operating press   | sure range                              | 0 to1MPa                                                         |  |  |
|                   | Pressure range                          | 0.2 to 0.7MPa                                                    |  |  |
| External pilot ai | Lubrication                             | Not required (Use turbine oil No.1 (ISO VG32) if lubricated) (2) |  |  |
|                   | Temperature                             | -5°C to 50°C(Air operated: 60°C)                                 |  |  |
|                   | NI Complete                             | N 0.1 1                                                          |  |  |



Note 1) No freezing

Note 2) Lubrication is not allowed in case of seal material EPR.

#### **Pilot Solenoid Valve Specifications**


|     |          | 6A to 25A                                 | 32A to 50A                                                                                                                                                                                                                               |  |  |  |  |  |  |
|-----|----------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| е   |          | SF4-□□□-23                                | VO301-00 □□□                                                                                                                                                                                                                             |  |  |  |  |  |  |
|     |          | DIN connector                             | DIN connector                                                                                                                                                                                                                            |  |  |  |  |  |  |
| AC( | 50/60Hz) | 100V, 200V                                | Others(Option)                                                                                                                                                                                                                           |  |  |  |  |  |  |
|     | DC       | 24V, Others(Option)                       |                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|     |          | -15% to +10%(rated voltage)               |                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|     |          | Class B or equivalent (130°C)             |                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|     |          | ≤35°C (Application of rated voltage)      | ≤70°C (Application of rated voltage)                                                                                                                                                                                                     |  |  |  |  |  |  |
| 100 | Inrush   | 5.6VA(50Hz), 5.0VA(60Hz)                  | 12VA(50Hz), -10.5VA(60Hz)                                                                                                                                                                                                                |  |  |  |  |  |  |
| AC  | Holding  | 3.4VA(50Hz), 2.3VA(60Hz)                  | 7.5VA(50Hz), 6VA(60Hz)                                                                                                                                                                                                                   |  |  |  |  |  |  |
| ı   | DC       | 1.8W                                      | 4.8W                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|     |          | Non-locking push style<br>Others (Option) | Non-locking push style                                                                                                                                                                                                                   |  |  |  |  |  |  |
|     | AC(      | AC(50/60Hz) DC  AC Inrush Holding         | B SF4-□□□-23  DIN connector  AC(50/60Hz) 100V, 200V  DC 24V, Othe  -15% to +10%  Class B or  ≤35°C (Application of rated voltage)  AC Inrush 5.6VA(50Hz), 5.0VA(60Hz)  Holding 3.4VA(50Hz), 2.3VA(60Hz)  DC 1.8W  Non-locking push style |  |  |  |  |  |  |



## **VNA**

#### **Flow Characteristics**

#### Air



#### How to Read The Graph

In the sonic flow region: For a flow of 6000 (#min)
VNA4mmm(Orificeø25)....P1 ≅ 0.14MPa
VNA4mmm(Orificeø20)....P1 ≅ 0.28MPa
VNA4mmm(Orificeø15)....P1 ≅ 0.5MPa

#### How to Calculate Flow

#### <Air and other gases>

①Equation in the domain of subsonic flow

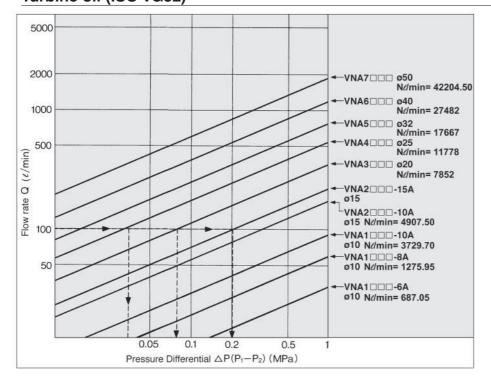
· Calculation by Cv factor

Q=4080·Cv·
$$\sqrt{\frac{\Delta P(P2+0.1013)}{G}}$$
· $\sqrt{\frac{273}{273+\theta}}$   
.....  $\ell$ /min (ANR)

· Calculation by effective area

$$\begin{array}{l} Q {=} 226 {\cdot} S {\cdot} \sqrt{\frac{\Delta P(P2 {+} 0.1013)}{G}} {\cdot} \sqrt{\frac{273}{273 {+} \theta}} \\ {\cdots} {\cdot} \ell / \text{min (ANR)} \end{array}$$

#### 2 Equation in the domain of sonic flow


· Calculation by Cv factor

$$Q = 2040 \cdot Cv \cdot (P_1 + 0.1013) \frac{1}{\sqrt{G}} \cdot \sqrt{\frac{273}{273 + \theta}}$$
 ......  $\ell$  /min (ANR)

· Calculation by effective area

Q=113·S·(P<sub>1</sub>+0.1013) 
$$\frac{1}{\sqrt{G}}$$
· $\sqrt{\frac{273}{273+\theta}}$   
.....  $\ell$ /min (ANR)

#### **Turbine oil (ISO VG32)**



#### How to Read The Graph

In case of a flow of oil 100  $\ell$ /min: VNA4 $\square\square$ (Orificeø24).... $\triangle$ P  $\cong$  0.035MPa VNA4 $\square\square$ (Orificeø20).... $\triangle$ P  $\cong$  0.08MPa VNA4 $\square\square$ (Orificeø15).... $\triangle$ P  $\cong$  0.2MPa

#### **How to Calculate Flow**

Calculation by Cv factor

$$Q=14.2 \cdot Cv \cdot \sqrt{\frac{10.2\Delta P}{G}} \dots \ell/min$$

Calculation by effective area

$$Q{=}0.8{\cdot}S{\cdot}\sqrt{\frac{10.2\Delta P}{G}}~.....\ell\!/min$$

Note) Calculation error of fluid with viscosity of 50 cSt or less will be very small.

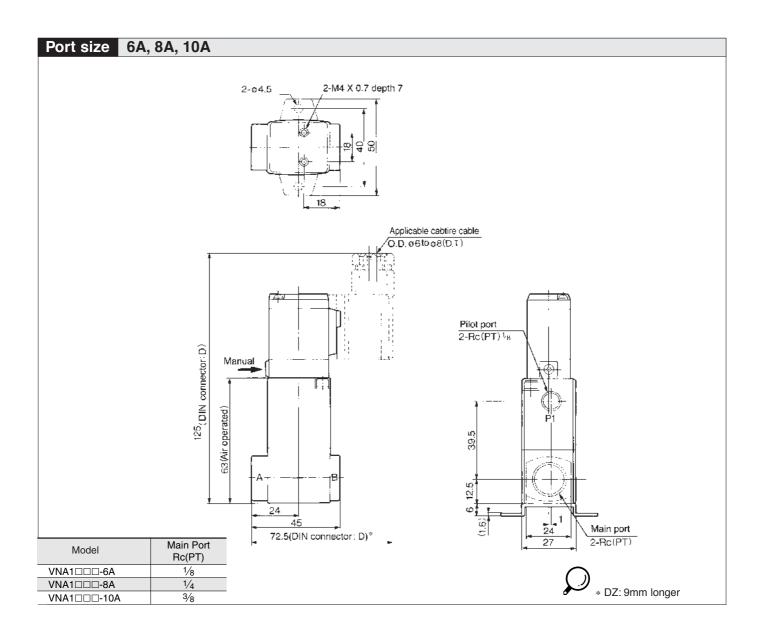
#### Symbol

Q : Flow rate (Air and other gases //min (ANR)) (Water and other liquids //min)

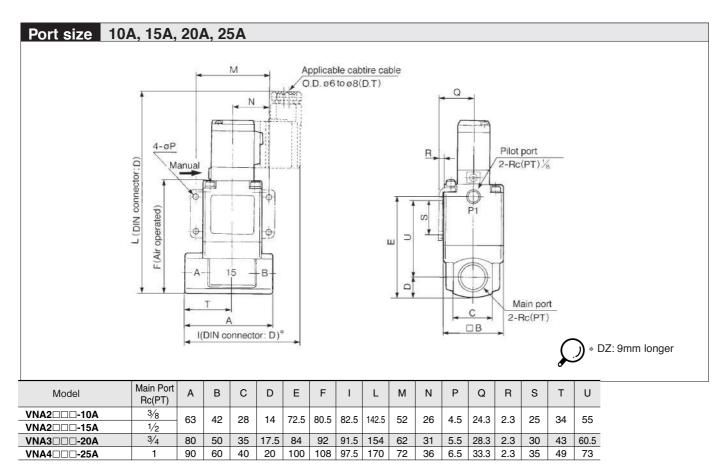
△P: Pressure differential (P1-P2)

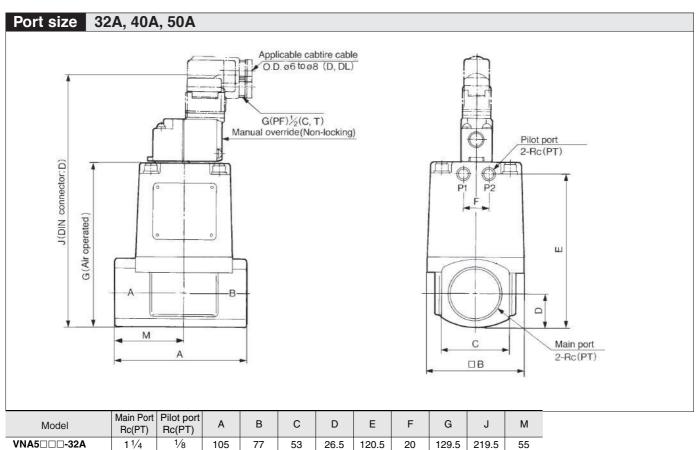
P1 : Upstream pressure (MPa)

P2 : Downstream pressure (MPa)


 $\theta$ : Temperature of air and other gases (°C)

S : Effective area (mm²) S ≅ 17667. N//min


Cv : Cv factor ( / )


G : Specific gravity ( / ) Air/Water=1





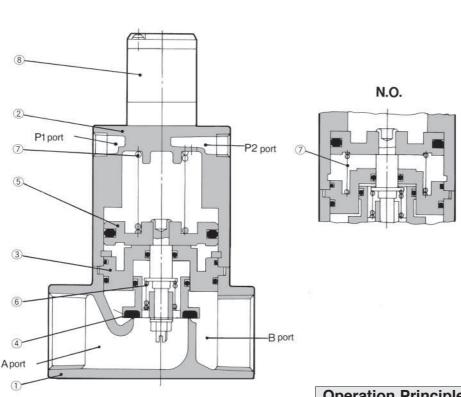
## **VNA**





VNA6□□□-40A

VNA7□□□-50A


1 1/2

1/4

1/4



#### Construction



**Component Parts** 

| No.                     | Description          | Material        | Note                          |
|-------------------------|----------------------|-----------------|-------------------------------|
| 1                       | Body                 | Aluminium alloy | Platinum silver painted       |
| 2                       | Cover assembly       | Aluminium alloy | Platinum silver painted       |
| 3(1)                    | Plate assembly       | Aluminium alloy | Valve material(NBR, FKM, EPR) |
| <b>4</b> <sup>(1)</sup> | Valve element        | Aluminium alloy | Valve material(NBR, FKM, EPR) |
| (5)                     | Piston assembly      | Aluminium alloy | _                             |
| 6                       | Travel spring        | Stainless steel | _                             |
| 7                       | Return spring        | Piano wire      | _                             |
| 8                       | Pilot solenoid valve | _               | _                             |
|                         |                      |                 |                               |

Note 1) Parts 3, 4 are for selection of valve composition.

#### **Operation Principles**

VNA□01□, □11□ (N.C.)

When the pilot solenoid valve (8) is not energized (or when air is exhausted from the P1 port of the air operated style),the valve element ④ linked to the piston  ${\mathfrak S}$  is closed by the return spring  ${\mathfrak T}$ .

#### ●When valve element opens

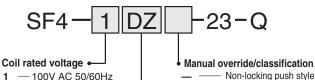
When the pilot solenoid valve is energized (or when pressuried air enters through the P1 port of the air operated style), the pilot air that has entered under the piston moves it upward to open the valve element.

#### ●When valve element opens

When the power to the pilot solenoid valve is turned off (or when air is exhausted from the P1 port of the air operated style), the pilot air under the piston is exhausted, and the return spring closes the valve element. VNA□02□, □12□ (N.O.)

In contrast with the N.C., when the power to the pilot solenoid valve is turned off (or when air is exhausted from the P2 port of the air operated style), the valve is held open by the return spring. When the pilot solenoid valve is energized (or when pressurized air enters through the P2 port of the air operated style), the valve element closes.

#### VNA□03□ (C.O.)


The valve element of the C.O. type, which has no return spring, is in an arbitary position when air is exhausted through the P1 and P2 ports. When pressurized air enters the P1 port (exhaust from the P2 port), the valve element opens, and it closes when pressurized air enters the P2 port (exhaust from the P1 port).

**Replacement Parts** 

|     | Description           |                   |     |                                            | Part No.  |          |          |                                             |          |          |  |  |
|-----|-----------------------|-------------------|-----|--------------------------------------------|-----------|----------|----------|---------------------------------------------|----------|----------|--|--|
| No. |                       |                   |     | VNA1□□A                                    | VNA2□□□   | VNA3□□□  | VNA4□□□  | VNA5□□□                                     | VNA6□□□  | VNA7□□□  |  |  |
|     |                       |                   |     | -6A, 8A, 10A                               | -10A, 15A | -20A     | -25A     | -32A                                        | -40A     | -50A     |  |  |
|     | Diete                 | Valve             | NBR | VN1-A3AA                                   | VN2-A3AA  | VN3-A3AA | VN4-A3AA | VN5-A3AA                                    | VN6-A3AA | VN7-A3AA |  |  |
| 3   | Plate<br>assembly     | material          | FKM | VN1-A3AB                                   | VN2-A3AB  | VN3-A3AB | VN4-A3AB | VN5-A3AB                                    | VN6-A3AB | VN7-A3AB |  |  |
|     |                       |                   | EPR | VN1-A3AC                                   | VN2-A3AC  | VN3-A3AC | VN4-A3AC | VN5-A3AC                                    | VN6-A3AC | VN7-A3AC |  |  |
|     | Valve disc            | Valve<br>material | NBR | VN1-4AA                                    | VN2-4AA   | VN3-4AA  | VN4-A4AA | VN5-A4AA                                    | VN6-A4AA | VN7-A4AA |  |  |
| 4   | (Valve disc a'ssy for |                   | FKM | VN1-4AB                                    | VN2-4AB   | VN3-4AB  | VN4-A4AB | VN5-A4AB                                    | VN6-A4AB | VN7-A4AB |  |  |
|     | 25A-50A)              |                   | EPR | VN1-4AC                                    | VN2-4AC   | VN3-4AC  | VN4-A4AC | VN5-A4AC                                    | VN6-A4AC | VN7-A4AC |  |  |
| 8   | Pilot solenoid valve  | 9                 |     | SF4-□□□-23 (Refer to p.4.2-10 for details) |           |          |          | VO301-00□□□ (Refer to p.4.2-10 for details) |          |          |  |  |

#### **How to Order Pilot Solenoid Valve**

Valve size 1, 2, 3, 4



- 100V AC 50/60Hz

- 200V AC 50/60Hz 2
- 110V AC 50/60Hz
- -220V AC 50/60Hz
- -24V DC
- 12V DC 6
- -240V AC 50/60Hz - Less than 250 VAC and 50 VDC

and surge voltage suppressor. DIN connector DIN connector with indicator

Electrical entry/Indicator light

light and surge voltage suppressor



Contact SMC for other voltages (9)



Valve size 5, 6, 7

VO301-00

#### Coil rated voltage •

- --- 100V AC 50/60Hz
- -- 200V AC 50/60Hz
- --- 110V AC 50/60Hz -- 220V AC 50/60Hz
- 4\* 5 - 24V DC
- 6\* 12V DC
- 240V AC 50/60Hz
- 9\* Other less than 250VAC and 50 VDC
- \* Option

#### Surge voltage suppressor

None S — Surge voltage suppressor (Except for DL)

#### 

DIN connector

**DL**\* — DIN connector with indicator light

\* Option



Note 1) When the electrical entry is D, the pilot solenoid valve parts are as follows:

#### VO301-00□D□-X302

 Indicator light and suppressor Coil rated voltage

## **A** Precautions

#### **External Pilot**

#### **⚠** Caution

#### Pilot port piping

Please arrange P1 and P2 piping as follows according to the model.

| Port | VNA□01□        | VNA□02□        | VNA□03□          | VNA□1 <sup>1</sup> □ |
|------|----------------|----------------|------------------|----------------------|
| P1   | External pilot | Bleed<br>port  | External pilot * | External pilot       |
| P2   | Bleed<br>port  | External pilot | External pilot * | Pilot<br>exhaust     |

\* If the pilot air is not supplied, the valve position will not be held. Pressurise Port 12 (P1) or Port 10 (P2) when using the product.

It is recommended to mount a silencer in the EXH port and the bleed port for noise reduction and dust entry prevention.

#### **Piping**

#### Caution

To use the piping with a high temperature fluid, use heat resistant fittings and tubes.

(Self-align fittings, tube copper pipe, etc.)

#### Use with Air-hydro Unit

#### ⚠ Warning

#### 1.Piping

When operation is suspended, surge pressure will be generated between the cylinder and VNA□11A. To directly thread in the cylinder, use durable fittings (SUS square nipples etc,) instead of ductile iron fittings (JIS B 2301) or steel pipe fittings (JIS

When VNA□11A is to be installed away from the cylinder, use a high-pressure rubber hose (JIS B 6349) instead of steel pipe as much as possible.

#### **⚠** Caution

#### 1.Air bleeding

Valves of Series VNA have no air bleeding port. Bleed air from the middle piping. Bleeding by a vaccum pump is more effective.

#### 2. Hydraulic fluid

Turbine oil, Grade 1, ISO VG32, with petroleum hydraulic fluid is recommended.

#### 3. Speed control valve

The combination shown in the following table is recommended to bring the best of Series VNA. (Piping: JIS K 6349 high pressure hose)

Combination of Series VNA and flow control valve (Series AS)

| valve (Series AS) |     |        |                                        |  |  |  |  |  |
|-------------------|-----|--------|----------------------------------------|--|--|--|--|--|
|                   | VNA | AS     | Piping (I.D.)                          |  |  |  |  |  |
| 10A               | 111 | 420-03 | 3/8 B(ø9.5)                            |  |  |  |  |  |
| 15A               | 211 | 420-04 | ½ B(ø12.7)                             |  |  |  |  |  |
| 20A               | 311 | 500-06 | 3/4 B(ø19.1)                           |  |  |  |  |  |
| 25A               | 411 | 600-10 | 1B(ø25.4)                              |  |  |  |  |  |
| 32A               | 511 | 800-12 | 1 <sup>1</sup> / <sub>4</sub> B(ø31.8) |  |  |  |  |  |
| 40A               | 611 | 900-14 | 1½ B(ø38.1)                            |  |  |  |  |  |
| 50A               | 711 | 900-20 | 2B(ø50.8)                              |  |  |  |  |  |

## 2 Port Valve for Flow Control **Process Valve**

# Series VNB

Proper selection wilh body and sealing materials permits application with a wide variety of fluids such as air, water, oil, gas and vaccum.

## Extensive applicable fluids The cylinder operated by external pilot air

#### Many variations

The N.C, N.O, and C.O. types are available.





Air operated

External pilot solenoid

#### Selection procedures



- ●Refer to Table ① to check that the desired fluid is applicable.
- Select the body and sealing materials that best suit the fluid to be used.

#### **Flow** characteristics (Air and water)

- To find the flow rate of air or water, refer to the table of flow rate charactertics on page 4.2-14. Use the flow rate calculation equation to find the exact answer. Although the flow rate is the same, the operating pressure differs according to the valve size. Therefore, select the proper valve size from applicable valves.
- Refer to Table 2 to select the port size.

#### Table (1) Applicable fluid check list

| Body material                                     | Copper alloy: Standard |              | Aluminium: L |              |              | Stainless steel: S |              |              |          |
|---------------------------------------------------|------------------------|--------------|--------------|--------------|--------------|--------------------|--------------|--------------|----------|
| Seal material                                     | NBR                    | FKM          | EPR          | NBR          | FKM          | EPR                | NBR          | FKM          | EPR      |
| Fluid                                             | : A                    | : B          | : C          | (: A         | : B          | [ : C              | : A          | : B          | : C      |
| Air (Standard, Dry)                               | •                      | •            |              | <del>-</del> | •            |                    | •            | <del>-</del> |          |
| Low vacuum (1 Torr)                               | •                      | •            |              | <del>-</del> | •            |                    | •            | <del>-</del> | _        |
| Carbon dioxide (CO <sub>2</sub> , 0.7MPa or less) | •                      |              |              | <del>-</del> |              |                    | •            |              |          |
| Carbon dioxide (CO <sub>2</sub> , 0.7 to 1MPa)    |                        |              | <del>-</del> |              |              | <del>-</del>       |              |              | <b>-</b> |
| Nitrogen gas (N <sub>2</sub> )                    | •                      | •            | <del>-</del> | •            | •            | <del>-</del>       | •            | <del>-</del> | <b>-</b> |
| Argon                                             | •                      | <b>-</b>     |              | <del>-</del> | <del>-</del> |                    | •            | <del>-</del> |          |
| Helium                                            |                        | -            |              |              | <del>-</del> |                    |              | <del>-</del> |          |
| Water (Standard, up to 60°C)                      | •                      |              |              |              |              |                    | •            |              |          |
| Water (up to 99°C only air operated)              |                        | -            | <del>-</del> |              |              |                    |              | <del>-</del> | <b>-</b> |
| Turbine oil                                       | -ullet                 | <del>-</del> |              | <del>-</del> | <del>-</del> |                    | <del>-</del> | <del>-</del> | _        |
| Spindle oil                                       |                        | <del>-</del> |              |              | <del>-</del> |                    |              | <del>-</del> | _        |
| Fuel oil class 3                                  |                        | <del>-</del> |              |              | <del>-</del> |                    |              | <del>-</del> | _        |
| Silicone oil                                      |                        | <del>-</del> |              |              |              |                    |              | <del>-</del> | _        |
| Naphtha                                           |                        | •            |              |              |              |                    |              | <del>-</del> |          |
| Ethylene glycol (bis 80°C)                        |                        |              | •            |              |              |                    |              |              | <b>-</b> |
| Boiler water                                      |                        |              |              |              |              |                    | •            |              | •        |

#### ⚠ Caution

When fluid permits application of multiple body and sealing material, select the best ones according to the ambient environment (FKM or EPR seal material for high temperature) and other conditions (corrosion resistance and viscosity). Contact SMC on other fluids, operating conditions, etc...

## Construction

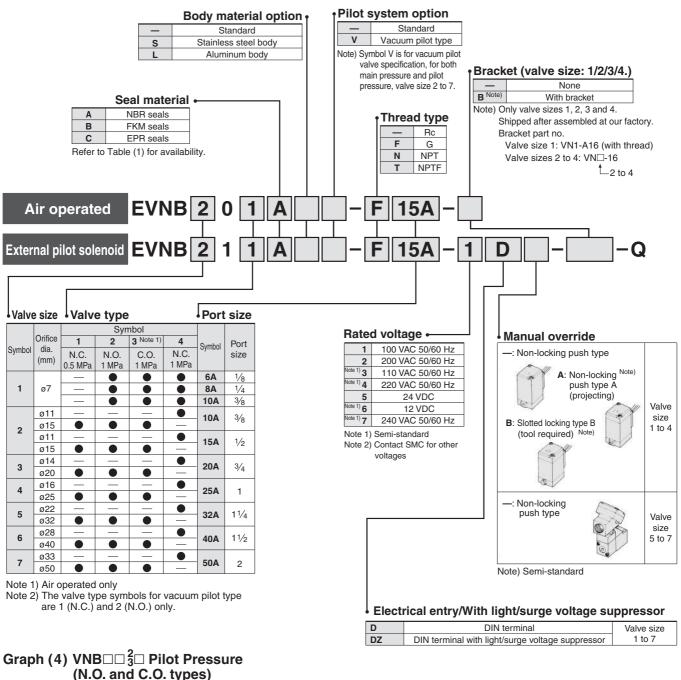
Select the air operated or external pilot solenoid styles. Valves come in N.C. (normally closed), N.O. (normally open), C.O. (double acting), and N.C.1MPa (normally closed) types. Select the proper one according to the operating conditions.



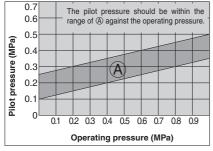
#### Supply voltage and electrical entry

(External pilot solenoid)

•Select AC or DC power supply, and select the proper method of electrical entry according to Table 3.


### Table 2 Valve size, port size combinations

| Valve | Port size |         |         |       |       |     |     |  |  |
|-------|-----------|---------|---------|-------|-------|-----|-----|--|--|
| size  | 6A  8     | A 10A _ | 15A 20  | )A 25 | A 32A | 40A | 50A |  |  |
| 1     |           |         | $\perp$ |       |       |     |     |  |  |
| 2     |           |         |         |       |       |     |     |  |  |
| 2     |           | l T     |         |       |       |     |     |  |  |
| 3     |           |         |         |       |       |     |     |  |  |
| 4     |           |         |         |       |       |     |     |  |  |
| 5     |           |         |         |       |       |     |     |  |  |
| 6     |           |         |         |       |       |     |     |  |  |
| 7     |           |         |         |       |       |     |     |  |  |


#### Table 3 Combination of electrical entry and light/surge voltage suppressor

| Valve<br>size | Electrical entry <b>D</b> | Indicator light and | surge suppressor | Manual | override |
|---------------|---------------------------|---------------------|------------------|--------|----------|
| 1, 2, 3, 4    | •                         |                     |                  |        |          |
| 5, 6, 7       | +                         |                     | -                |        |          |

#### **How to Order**



## (N.O. and C.O. types)





#### Model

|             |           | Orifice        | Flo      | Flow rate            |              | Weight (kg)             |  |
|-------------|-----------|----------------|----------|----------------------|--------------|-------------------------|--|
| Model       | Port size | size<br>ø (mm) | Ne/min   | Effective area (mm²) | Air operated | External pilot solenoid |  |
|             | . ,       | 2 (11111)      |          | , ,                  | operateu     | Soleriola               |  |
| VNB1□□□-6A  | 1/8       |                | 687.05   | 13                   |              |                         |  |
| VNB1□□□-8A  | 1/4       | 7              | 981.50   | 18                   | 0.3          | 0.4                     |  |
| VNB1□□□-10A |           |                | 1275.95  | 23                   |              |                         |  |
| VNB2□4□-10A | 3/8       | 11             | 2453.75  | 45                   |              |                         |  |
| VNB2□□□-10A |           | 15             | 3729.70  | 70                   | 0.6          | 0.7                     |  |
| VNB2□4□-15A | 1/2       | 11             | 2944.50  | 55                   |              |                         |  |
| VNB2□□□-15A | 72        | 15             | 4907.50  | 90                   |              |                         |  |
| VNB3□4□-20A | 3/4       | 14             | 4907.50  | 90                   | 0.9          | 1.0                     |  |
| VNB3□□-20A  | 94        | 20             | 7852.00  | 140                  | 0.9          | 1.0                     |  |
| VNB4□4□-25A | 1         | 16             | 6870.50  | 130                  | 1.4          | 1.5                     |  |
| VNB4□□□-25A | ·         | 25             | 11778.0  | 220                  | 1.4          | 1.5                     |  |
| VNB5□4□-32A | 11/4      | 22             | 10796.50 | 210                  | 2.5          | 2.6                     |  |
| VNB5□□□-32A | 174       | 32             | 17667.0  | 320                  | 2.5          | 2.0                     |  |
| VNB6□4□-40A | 11/2      | 28             | 18648.50 | 330                  | 4.1          | 4.0                     |  |
| VNB6□□□-40A | 172       | 40             | 27482.0  | 500                  | 4.1          | 4.2                     |  |
| VNB7□4□-50A |           | 33             | 28463.50 | 520                  | 6.2          | 6.4                     |  |
| VNB7□□□-50A | 2         | 50             | 42204.50 | 770                  | 6.3          | 0.4                     |  |

#### **Symbol**

| _                             |                      |          |        |
|-------------------------------|----------------------|----------|--------|
| Valve                         | N.C.                 | N.O.     | C.O.   |
|                               | Normally             | Normally | Double |
| Style                         | closed               | open     | ading  |
|                               | VNB□0 <sup>1</sup>   | VNB□02   | VNB□03 |
| Air<br>operated               | P1 A     B           | A B      | P1 A   |
|                               | VNB□1 <sup>1</sup> ₄ | VNB□12   |        |
| External<br>pilot<br>solenoid | P1 A H B             | P1 A B   |        |

# Option Specifications Vacuum pilot valve VNB□□□□V

(Valve size 2 to 7)

It is used when the valve is to be operated by the main vacuum in the absence of pressurized air.

#### **Valve Specifications**

| Fluid                | Vacuum        |
|----------------------|---------------|
| Pressure range       | 1 to 760 Torr |
| Pilot pressure range | 1 to 400 Torr |

| Valve                   | N.C.            | N.O.           |  |  |
|-------------------------|-----------------|----------------|--|--|
| Style                   | Normally closed | Normally open  |  |  |
|                         | VNB□01□V        | VNB□02□V       |  |  |
| Air<br>operated         | P2<br>A         | P1 A B         |  |  |
|                         | VNB□11□V        | VNB□12□V       |  |  |
| External pilot solenoid | P1<br>A         | P1<br>H H<br>B |  |  |

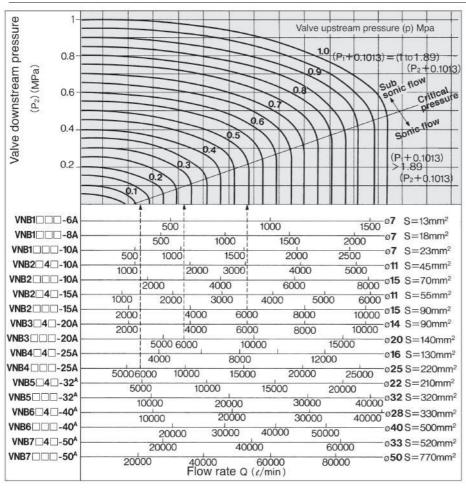
**Valve Specifications** 

|                | • • • • • • • • • • • • • • • • • • • • | 7 01 11 0 1 1 0                   |                                                                   |  |  |
|----------------|-----------------------------------------|-----------------------------------|-------------------------------------------------------------------|--|--|
| Fluids         | Fluids                                  |                                   | Water, Oil, Air, Vaccum, etc.                                     |  |  |
| Fluid          | VNE                                     | B□□□A                             | −5 to 60°C <sup>(1)</sup>                                         |  |  |
| temperature    | VALE                                    | 3□□□ 8                            | −5 to 99°C <sup>(1)</sup>                                         |  |  |
| temperature    | VINE                                    | ошшш с                            | (Water, oil etc. Only air operated)                               |  |  |
| Ambient tempe  | Ambient temperature                     |                                   | -5 to 50°C(Air operated type: 60°C) (1)                           |  |  |
| Proof pressure | Proof pressure                          |                                   | 1.5MPa                                                            |  |  |
| Applicable     | VNE                                     | VNB□□1□ Low vacuum to 0.5MPa      |                                                                   |  |  |
| press. range   | VNB□□¾□                                 |                                   | Low vacuum to 1MPa                                                |  |  |
|                | Press.                                  | VNB□□4□                           | 0.25 to 0.7MPa                                                    |  |  |
| External       | FIESS.                                  | VNB□□ <sup>2</sup> <sub>3</sub> □ | 0.1 to 0.5MPa See Table 4 on page P.                              |  |  |
| pilot air      | Lubr                                    | ication                           | Not required (Use turbine oil No.1 (ISO VG32), if lubricated.) (2 |  |  |
|                | Tem                                     | perature                          | -5 to 50°C (Air operated: 60°C) (1)                               |  |  |
|                |                                         |                                   |                                                                   |  |  |



Note 1) No freezing Note 2) Lubrication is not allowed in case of seal material EPR.

#### **Pilot Solenoid Specifications**


| Port size         |                                              | 6A to 25A                                 | 32A to 50A                           |                                      |  |
|-------------------|----------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--|
| Pilot solenoid va | alve                                         |                                           | SF4-□□□-23-Q                         | VO307-□ <sub>DZ</sub> 1-Q            |  |
| Electrical entry  |                                              |                                           | DIN connector                        | DIN connector                        |  |
| Coil rated        | AC (                                         | 50/60Hz)                                  | 100V, 200V, 0                        | Others (Option)                      |  |
| voltage           |                                              | DC                                        | 24V, Othe                            | ers (Option)                         |  |
| Allowable voltag  | owable voltage -15% to +10% of rated voltage |                                           |                                      | of rated voltage                     |  |
| Coil insulation   |                                              |                                           | Class B or equivalent (130°C)        |                                      |  |
| Temperature ris   | Temperature rise                             |                                           | ≤35°C (Application of rated voltage) | ≤50°C (Application of rated voltage) |  |
| Apparent namer    | 100                                          | Inrush                                    | 5.6VA(50Hz), 5.0VA(60Hz)             | 12.7VA(50Hz), 10.7VA(60Hz)           |  |
| Apparent power    | Apparent power AC                            |                                           | 3.4VA(50Hz), 2.3VA(60Hz)             | 7.6VA(50Hz), 5.4VA(60Hz)             |  |
| Power consumption | ion DC                                       |                                           | 1.8W                                 | 4W                                   |  |
| Manual override   |                                              | Non-locking push style<br>Others (Option) | Non-locking push style               |                                      |  |

Note) Vacuum pilot type pilot solenoid valves will become VO307V- $\square_{DZ}^D$ 1-Q.



#### Flow Characteristics

#### Air



#### **How to Read The Graph**

In the sonic flow region: For a flow of 6000 (t/min) VNB4 $\square\square$  (Orifice ø25).....P1  $\cong$  0.14MPa VNB4 $\square\square$  (Orifice ø20).....P1  $\cong$  0.28MPa VNB4 $\square\square$  (Orifice ø15).....P1  $\cong$  0.5MPa

#### **How to Calculate Flow**

#### <Air and other gases>

1) Equation in the domain of subsonic flow

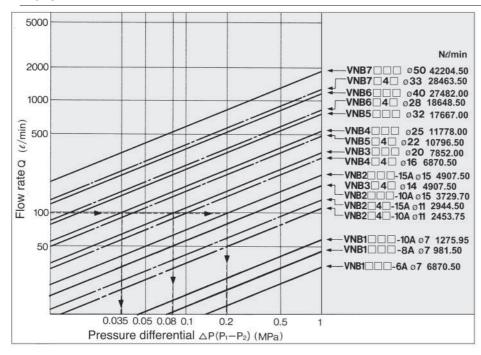
Calculation by Cv factor

$$Q{=}4080{\cdot}Cv{\cdot}\sqrt{\frac{{\scriptstyle\Delta}P(P2{+}0.1013)}{G}}{\cdot}\sqrt{\frac{273}{273{+}\theta}}\\ \cdots\cdots \ell /min (ANR)$$

Calculation by effective area

$$Q = 226 \cdot S \cdot \sqrt{\frac{\Delta P(P2 + 0.1013)}{G}} \cdot \sqrt{\frac{273}{273 + \theta}} \\ \cdots \\ \ell / min (ANR)$$

#### 2 Equation in the domain of sonic flow


Calculation by Cv factor

$$\begin{array}{c} Q \!\!=\!\! 2040 \!\cdot\! Cv \!\cdot\! \left(P_1 \!\!+\!\! 0.1013\right) \frac{1}{\sqrt{G}} \cdot \! \sqrt{\frac{273}{273 \!+\! 0}} \\ \cdots \cdots \ell \ /\! \min \ (ANR) \end{array}$$

• Calculation by effective area

Q=113·S·(P1+0.1013) 
$$\frac{1}{\sqrt{G}} \cdot \sqrt{\frac{273}{273+\theta}}$$
  
.....  $\ell$  /min (ANR)

#### Water



#### **How to Read The Graph**

In case of a flow of 100 d/min:

VNB4 $\square\square$  (Orifice ø25)..... $\triangle$ P to 0.035MPa VNB4 $\square$  (Orifice ø20)..... $\triangle$ P to 0.08MPa

VNB4□□□ (Orifice ø15).....△P to 0.2MPa

#### **How to Calculate Flow**

· Calculation by Cv factor

$$Q{=}14.2{\cdot}Cv{\cdot}\sqrt{\frac{10.2\Delta P}{G}}\;.....\ell\!/min$$

Calculation by effective area

$$Q{=}0.8{\cdot}S{\cdot}\sqrt{\frac{10.2\Delta P}{G}}~.....\ell\!/min$$

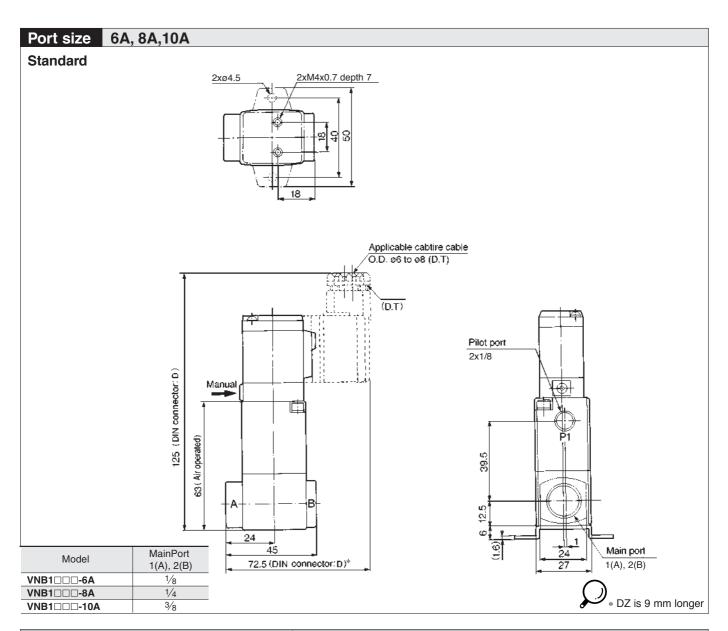
Note) Calculation error of fluid with viscosity of 50cSt or less will be very small.

#### Symbol

Q : Flow rate (Air and other gases ∉min(ANR)) (Water and other fluids ∉min)

△P: Pressure differential(P1—P2)

P1 : Upstream pressure (MPa)


P2 : Downstream pressure (MPa)

θ : Temperature of air and other gases (°C)

S : Effective area(mm<sup>2</sup>) S  $\cong$  17667. N//min

Cv : Cv factor ( / )

G: Specific gravity (/) Air/Water=1



## **A** Precautions

#### **External Pilot**

## ⚠ Caution

#### Pilot port piping

Please arrange P1 and P2 piping as follows according to the model.

#### Standard

| Port | VNB□0 <sup>1</sup> □ | VNB□02□        | VNB□03□        |                |
|------|----------------------|----------------|----------------|----------------|
| P1   | External pilot       | Bleed<br>port  | External pilot | External pilot |
| P2   | Bleed<br>port        | External pilot | External pilot | Pilot exhaust  |

#### Vacuum pilot

| F | Port | VNB□01□V       | VNB□02□V       | VNB 1 1 DV       |
|---|------|----------------|----------------|------------------|
| ı | P1   | Bleed port     | External pilot | External pilot   |
| Ī | P2   | External pilot | Bleed port     | Pilot<br>exhaust |

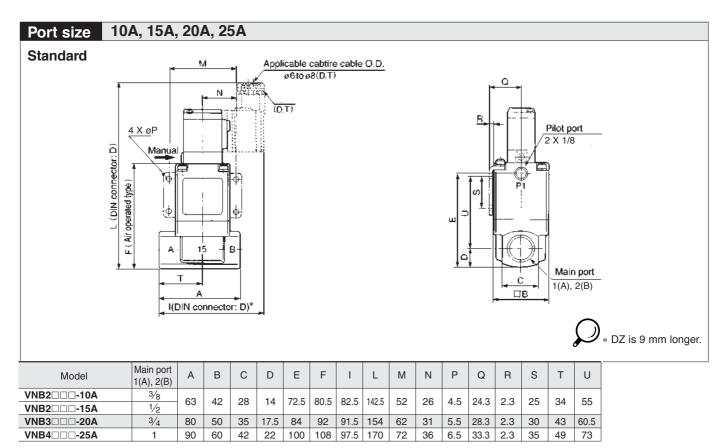
It is recommended to mount a silencer in the EXH port and the bleed port for noise reduction and dust entry prevention.

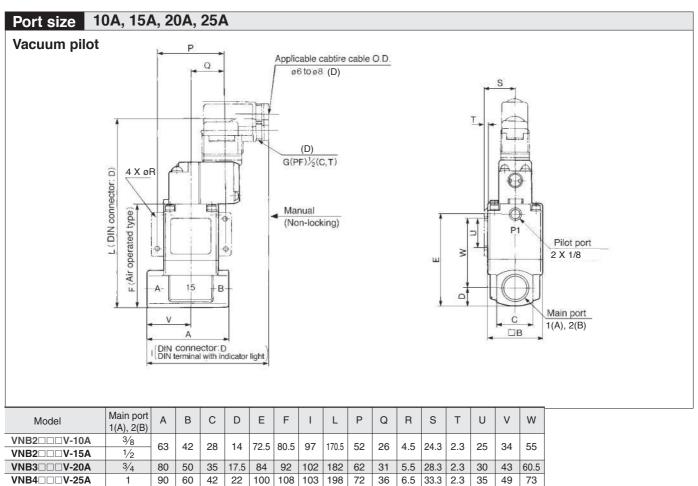
#### **Vacuum Pilot**

#### **⚠** Caution

When using the VNB 1 T V N.C. vacuum pilot, maintain the specified pilot pressure by providing a tank with an appropriate capacity or by acquiring the pilot pressure from an area near the vacuum pump.




#### **Piping**


#### 

To use the piping with a high temperature fluid, use heat resistant fittings and tubes. (Self-align fittings, tube copper pipe, etc.)



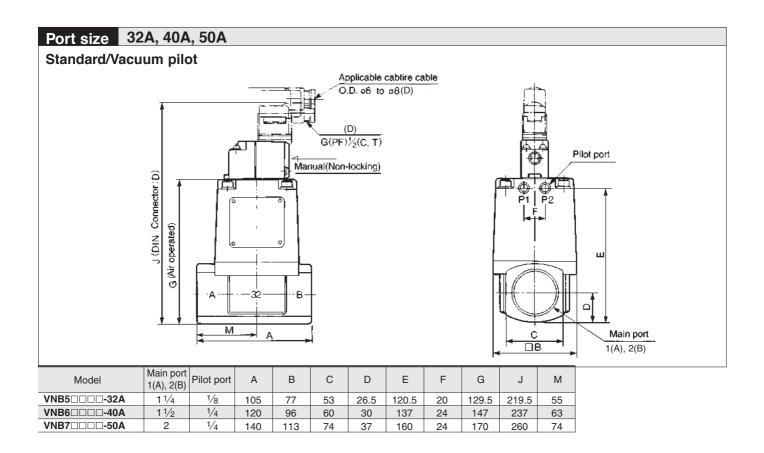
## **VNB**



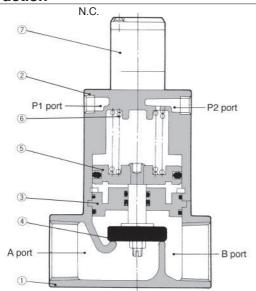


36 | 6.5 | 33.3 | 2.3 |

35


49 | 73

60 42 22


90

1





#### Construction



#### **Component Parts**

| No. | Description          | Material        | Note                           |  |
|-----|----------------------|-----------------|--------------------------------|--|
| 1   | Body                 | Bronze*         | Clear coated                   |  |
| 2   | Cover assembly       | Aluminium alloy | Platinum silver painted        |  |
| 3   | Plate assembly       | Brass*          | Valve material (NBR, FKM, EPR) |  |
| 4   | Valve element        | (NBR, FKM, EPR) | Stainless steel or brass       |  |
| (5) | Piston assembly      | Aluminium alloy | _                              |  |
| 6   | Return spring        | Piano wire      | _                              |  |
| 7   | Pilot solenoid valve | _               | _                              |  |

Note) Parts 3 and 4 are for selection of valve composition.  $\ast$  The body option "S" is stainless steel, and "L" is aluminum.

N.O.

#### Principles of Operation (The vacuum pilot style is excluded)

VNB□0 ¼□, □1 ¼1□ (N.C.)

When the pilot solenoid valve ② is not energized (or when air is exhausted from the  $P_1$  port of the air operated type), the valve element 4 linked to the piston 5 is closed by the return spring 6.

#### · When valve element opens

When the pilot solenoid valve is energized (or when pressurized air enters through the P1 port of the air operated style), the pilot air that has entered under the piston moves upward to open the valve element.

#### · When valve element closes

When the power to the pilot solenoid valve is turned off (or when fluid is exhausted from the P<sub>1</sub> port of the air operated style), the pilot air under the piston is exhausted, and the return spring closes the valve element

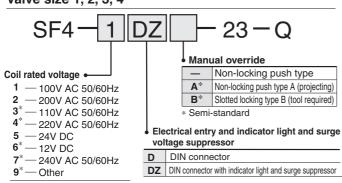
#### VNB□ 02□, □12□ (N.O.)

In contrast wth the N.C., when the power to the pilot solenoid valve is turned off (or when air is exhausted from the P2 port of the air operated style), the valve is held open by the return spring. When the pilot solenoid valve is energized (or when pressurized air enters through the P2 port of the air operated style), the valve element closes.

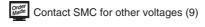
#### VNB □ 03□ (C.O.)

The valve element for the C.O. type, which has no return spring, is in an arbitary position when air is exhausted through the P1 and P2 ports. When pressurized air enters the P1 port (exhaust from the P2 port), the valve element opens, and it closes when pressurized air enters the P2 port (exhaust from the P1 port).

#### Replacement Parts

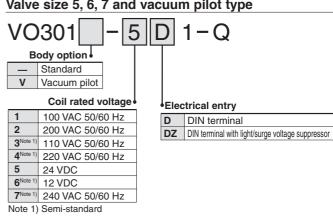

|        |             |                                |              |           | Part No. |                           |          |          |            |          |            |          |            |
|--------|-------------|--------------------------------|--------------|-----------|----------|---------------------------|----------|----------|------------|----------|------------|----------|------------|
| No.    | Desc        | ription                        |              | VNB1□□□   | VNB2□□□  | VNB3□□□                   | VNB4□□□  | VNB5□□□  | VNB5□4□    | VNB6□□□  | VNB6□4□    | VNB7□□□  | VNB7□4□    |
|        | ·           |                                | -6A, 8A, 10A | -10A, 15A | -20A     | -25A                      | -32A     | -32A     | -40A       | -40A     | -50A       | -50A     |            |
|        | D           |                                | NBR          | VN1-A3BA  | VN2-A3BA | VN3-A3BA                  | VN4-A3BA | VN5-A3BA | VN5-A3BA   | VN6-A3BA | VN6-A3BA   | VN7-A3BA | VN7-A3BA   |
| ③(1)   | Plate       | Valve<br>material              | FKM          | VN1-A3BB  | VN2-A3BB | VN3-A3BB                  | VN4-A3BB | VN5-A3BB | VN5-A3BB   | VN6-A3BB | VN6-A3BB   | VN7-A3BB | VN7-A3BB   |
|        | assembly    |                                | EPR          | VN1-A3BC  | VN2-A3BC | VN3-A3BC                  | VN4-A3BC | VN5-A3BC | VN5-A3BC   | VN6-A3BC | VN6-A3BC   | VN7-A3BC | VN7-A3BC   |
|        | Valve (2)   |                                | NBR          | VN1-4BA   | VN2-4BA  | VN3-4BA                   | VN4-4BA  | VN5-A4BA | VN5-A4BA-3 | VN6-A4BA | VN6-A4BA-3 | VN7-A4BA | VN7-A4BA-3 |
| (4)(1) | element     | Valve<br>material              | FKM          | VN1-4BB   | VN2-4BB  | VN3-4BB                   | VN4-4BB  | VN5-A4BB | VN5-A4BB-3 | VN6-A4BB | VN6-A4BB-3 | VN7-A4BB | VN7-A4BB-3 |
|        | Cicinent    |                                | EPR          | VN1-4BC   | VN2-4BC  | VN3-4BC                   | VN4-4BC  | VN5-A4BC | VN5-A4BC-3 | VN6-A4BC | VN6-A4BC-3 | VN7-A4BC | VN7-A4BC-3 |
| 7      | Pilot solen | ot solenoid valve SF4-□□□-23-Q |              |           |          | VO307-□ <sub>DZ</sub> 1-Q |          |          |            |          |            |          |            |

Note 1) In the casesy of body options "S" and "L", the materials of the parts Nos. ③ and ④ are as follows: (Example): VN1-A3BQA Note 2) 32A to 50A come in valve element assembly L: Aluminium, S: Stainless steel


However all brackets of valve element of VNB 1 to 4 are made of stainless steel. (No need to add options "S" and "L".)

#### How to Order Pilot Solenoid Valve

#### Valve size 1, 2, 3, 4




\* Option





#### Valve size 5, 6, 7 and vacuum pilot type



Note 2) For other voltages,

please consult with SMC

#### Accessory

Function plate for VO307: DXT152-14-1A

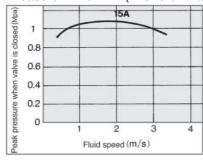


## Air Operated Valve/External Pilot Solenoid **Coolant Valve**

# Series VNC

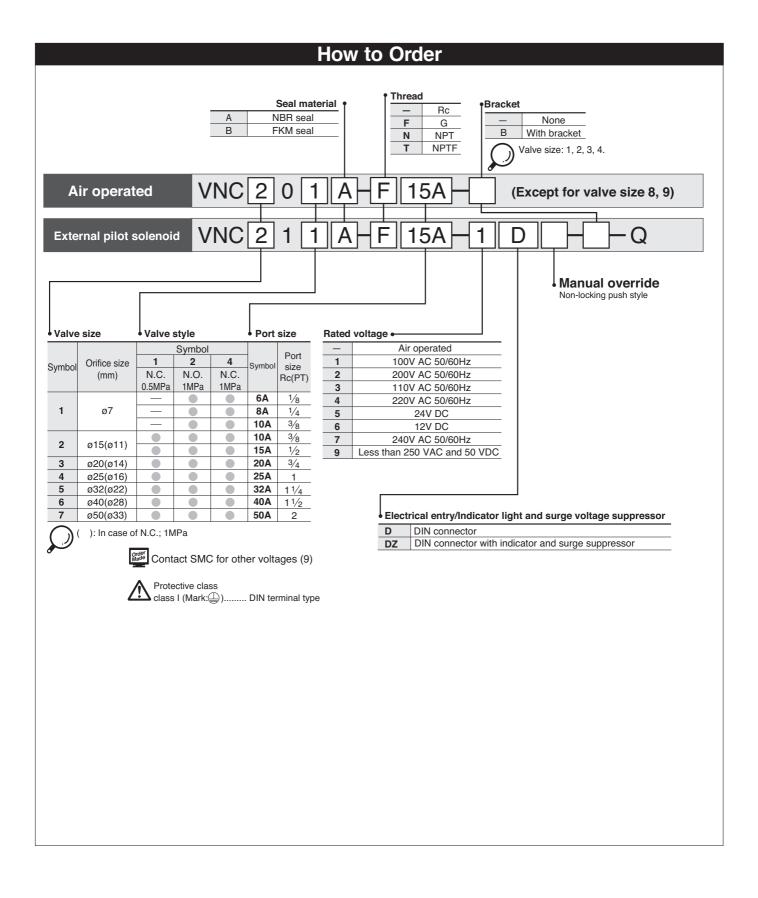
Cylinder operated by the external pilot

Air operaed External pilot solenoid valve N.C. N.O.


Wide selection of port sizes and variations Thread (6A to 50A)



Low water hammer


Max.1.2MPa

In case of VNC211A(N.C. 0.5MPa)



Conditions: Piping length/30m Steel tube, full pressure/0.5MPa Large flow capacity Ne/min 687 to 42204

## **VNC**

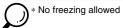








#### Model


| MOGCI       | MOGCI                            |                       |                        |          |                  |              |                         |  |
|-------------|----------------------------------|-----------------------|------------------------|----------|------------------|--------------|-------------------------|--|
|             | Port <sub>i</sub> size Flow rate |                       | w rate                 | Weigh    | t (kg)           |              |                         |  |
| Model       | Rc(PT)                           | Flange <sup>(1)</sup> | Orifice size<br>ø (mm) | Ne/min   | Effe. area (mm²) | Air operated | External pilot solenoid |  |
| VNC1□□□-6A  | 1/8                              | _                     |                        | 687.05   | 13               |              |                         |  |
| VNC1□□□-8A  | 1/4                              | _                     | 7                      | 981.50   | 18               | 0.2          | 0.3                     |  |
| VNC1□□□-10A |                                  |                       |                        | 1275.95  | 23               |              |                         |  |
| VNC2□4□-10A | 3/8                              | _                     | 11                     | 2453.75  | 45               |              |                         |  |
| VNC2□□□-10A | ]                                |                       | 15                     | 3729.70  | 70               | 0.5          | 0.7                     |  |
| VNC2□4□-15A | 1/2                              | 2 —                   | 11                     | 2944.50  | 55               | 0.5          |                         |  |
| VNC2□□□-15A | 1 72                             |                       | 15                     | 4907.50  | 90               |              |                         |  |
| VNC3□4□-20A | 3/4                              | _                     | 14                     | 4907.50  | 90               | 0.8          | 1.0                     |  |
| VNC3□□□-20A | 1 94                             |                       | 20                     | 7852.00  | 140              |              |                         |  |
| VNC4□4□-25A | 4                                |                       | 16                     | 6870.50  | 130              | 1.2          | 4.4                     |  |
| VNC4□□□-25A | 1                                | _                     | 25                     | 11778.00 | 220              | 1.4          | 1.4                     |  |
| VNC5□4□-32A | 11/4                             |                       | 22                     | 10796.50 | 210              | 2.2          | 2.4                     |  |
| VNC5□□□-32A | 174                              | _                     | 32                     | 17667.00 | 320              | 2.2          | 2.4                     |  |
| VNC6□4□-40A | 11/2                             |                       | 28                     | 18648.50 | 330              | 3.6          | 2.0                     |  |
| VNC6□□□-40A | 172                              | _                     | 40                     | 27482.00 | 500              | 3.0          | 3.8                     |  |
| VNC7□4□-50A |                                  |                       | 33                     | 28463.50 | 520              |              | F 7                     |  |
| VNC7□□□-50A | 2                                | _                     | 50                     | 42204.50 | 770              | 5.5          | 5.7                     |  |

**Symbol** 

| Valve style Operation   | N.C.     | N.O.    |  |
|-------------------------|----------|---------|--|
|                         | VNC 04 D | VNC□02□ |  |
| Air operated            | <br>     | P2      |  |
|                         | VNC□0¼□  | VNC□12□ |  |
| External pilot operated | P1       | P1      |  |

**Valve Specifications** 

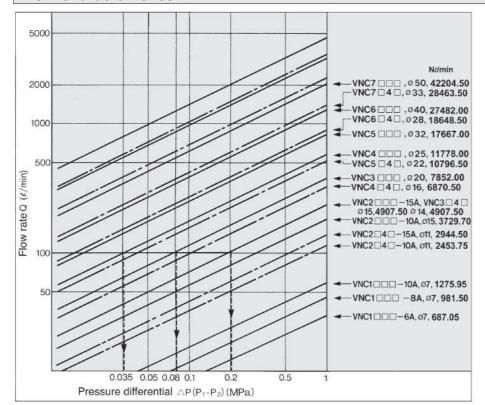
| Valve O        | dive opecinications |           |                                                |  |  |  |  |  |  |  |  |
|----------------|---------------------|-----------|------------------------------------------------|--|--|--|--|--|--|--|--|
| Applicable f   | luids               |           | Coolant                                        |  |  |  |  |  |  |  |  |
| Fluid          | VN                  | C□□□A     | −5 to 60°C                                     |  |  |  |  |  |  |  |  |
| temperature    | VNI                 | СПППВ     | −5 to 60°C                                     |  |  |  |  |  |  |  |  |
| temperature    | V 14                |           | (If over 60°C, consult SMC on air operated sty |  |  |  |  |  |  |  |  |
| Ambient ten    | npera               | ture      | -5 to 50°C(Air operated: 60°C)                 |  |  |  |  |  |  |  |  |
| Proof pressure |                     |           | 1.5MPa                                         |  |  |  |  |  |  |  |  |
| Applicable     | VNC                 |           | 0 to 0.5MPa                                    |  |  |  |  |  |  |  |  |
| pressure range |                     |           | 0 to1MPa                                       |  |  |  |  |  |  |  |  |
|                | ressure             | VNC 🗆 🖟   | 0.25 to 0.7MPa                                 |  |  |  |  |  |  |  |  |
| External       | Pres                | VNC□□2□   | 0.1 to 0.7MPa                                  |  |  |  |  |  |  |  |  |
| pilot air      | Lub                 | rication  | Refer to table 1: Not required (ISO VG32)      |  |  |  |  |  |  |  |  |
|                | Ten                 | nperature | - 5 to 50°C (Air operated: 60°C)               |  |  |  |  |  |  |  |  |
|                |                     |           |                                                |  |  |  |  |  |  |  |  |



Pilot Solenoid Valve Specifications

Model VNC1

| Model             |             |             | VNC1□□□                           | VNC2□□□to 9□□□         |  |  |  |
|-------------------|-------------|-------------|-----------------------------------|------------------------|--|--|--|
| Pilot solenoi     | d val       | ve          | SF4-□□□-23                        | VO301-00□T□-X302       |  |  |  |
| Electrical en     | try         |             | DIN Connector                     | DIN Connector          |  |  |  |
|                   | AC<br>(50/6 | 0 Hz)       | 100V, 200V                        | others (Option)        |  |  |  |
| voltage           | DC          |             | 24V, others (Option)              |                        |  |  |  |
| Allowable vol     | tage i      | range       | -15% to +10% of rated voltage     |                        |  |  |  |
| Coil insulation   | n           |             | Class B or equ                    | ivalent (130°C)        |  |  |  |
| Temperature       | rise        |             | 35°C or less                      | 70°C or less           |  |  |  |
|                   |             |             | 5.6VA (50Hz)                      | 12VA (50Hz)            |  |  |  |
| Apparent          | AC          | In-rush     | 5.0VA (60Hz)                      | 10.5VA (60Hz)          |  |  |  |
| power             | 70          | Holding     | 3.4VA (50Hz)                      | 7.5VA (50Hz)           |  |  |  |
|                   |             | litiolaring | 2.3VA (60Hz)                      | 6VA (60Hz)             |  |  |  |
| Power consumption | 1 [         | oc          | 1.8W                              | 4.8W                   |  |  |  |
| Manual override   |             |             | Non-locking push<br>style, Option | Non-locking push style |  |  |  |


#### Table 1 Operating pressure vs pilot pressure

| 0.7                         |     |                             |       |       |       |       | ıld b |      | ed_ |
|-----------------------------|-----|-----------------------------|-------|-------|-------|-------|-------|------|-----|
| 8 0.6                       |     |                             |       |       |       |       | agai  | nst  |     |
| 0.6 (MPa)                   | 10  | $\mathcal{Q}_{\mathrm{ot}}$ | erat  | ing   | pres  | sure  |       |      |     |
| ₾ 0.4                       | -   |                             |       |       | -     |       |       |      |     |
| 0.3                         | -   |                             |       |       |       |       |       | _    | _   |
| 0.2                         | -   |                             |       | _     |       |       |       |      | -   |
| 0.4 – 0.3 – 0.2 – 0.1 – 0.1 | _   |                             |       |       |       |       |       |      |     |
| 0                           | 0.1 | ).2 (                       | ).3 ( | ).4 ( | ).5 ( | 0.6 ( | ).7 ( | .8 0 | .9  |
|                             | Ope | ratir                       | ng pr | essi  | ure ( | MPa   | 1)    |      |     |

**SMC** 

## **VNC**

#### **Flow Charactertistics**



#### How to Read The Graph

Pressure differential when using a coolant (flow rate 100 $\ell$ /min) VNC4 $\square\square$ (Orifice size Ø 25):  $\Delta P \cong 0.035$ MPa, VNC2 $\square\square$  (Orifice size Ø 15):  $\Delta P \cong 0.2$ MPa

#### **How to Calculate Flow**

· Calculation by Cv factor

Q=14.2·Cv·
$$\sqrt{\frac{10.2\Delta P}{G}}$$
 ..... $\ell$ /min

· Calculation by effective area

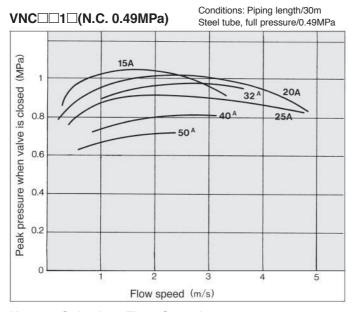
$$Q{=}0.8{\cdot}S{\cdot}\sqrt{\frac{10.2\Delta P}{G}}\,\ldots\ldots\ell/min$$

#### (Symbol)

Q: Flow rate (//min)

ΔP: Pressure differential(P1-P2)

P1: Primary pressure(MPa)


P1: Secondary pressure(MPa)

S: Effective area (mm<sup>2</sup>)S  $\approx$  17667.00 N $\ell$ /min

Cv: Cv factor( / )

G: Specific gravity ( / ) Water =1

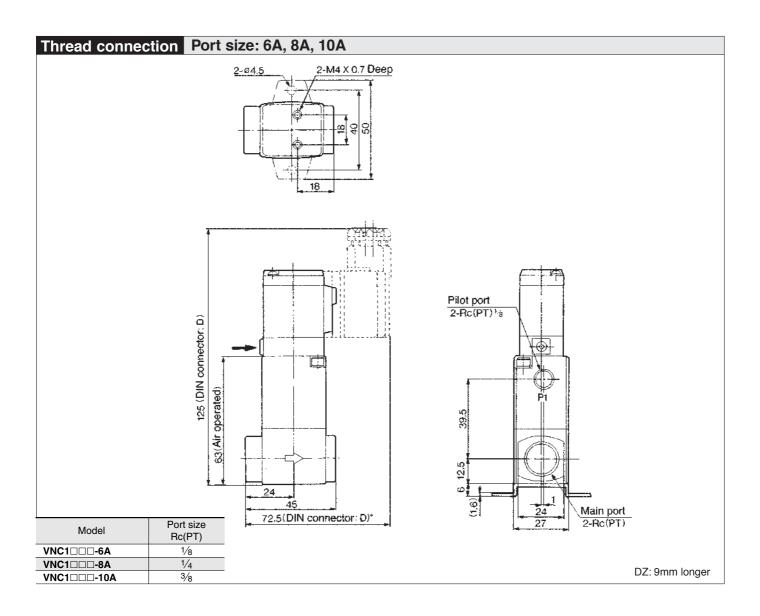
#### **Water Hammer Characteristics**



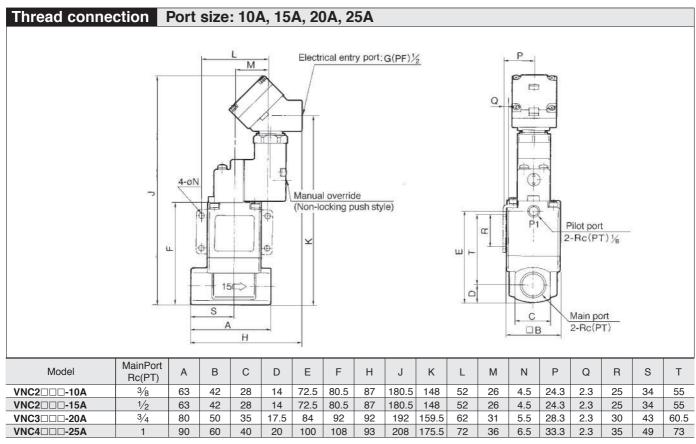
#### Conditions: Piping length/30m **VNC**□□4□(N.C. 0.97MPa) Steel tube, full pressure/0.97MPa 2.5 (MPa) 25A 2 20A Peak pressure when valve is closed 32 1.6 1.2 0.8 0.4 0 Flow speed (m/s)

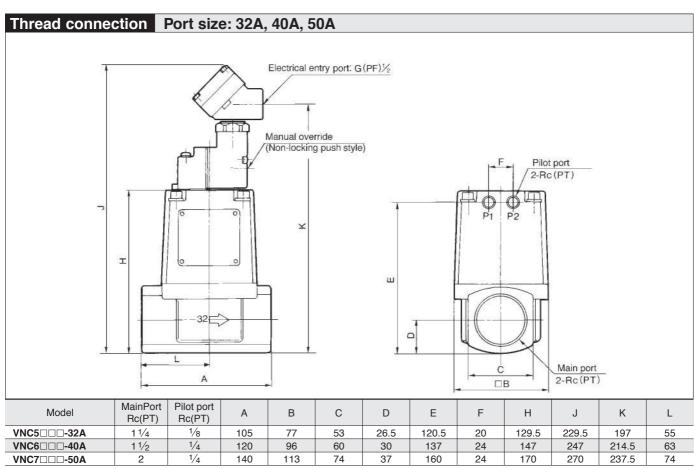
#### **How to Calculate Flow Speed**

v=212 X Q/d<sup>2</sup>

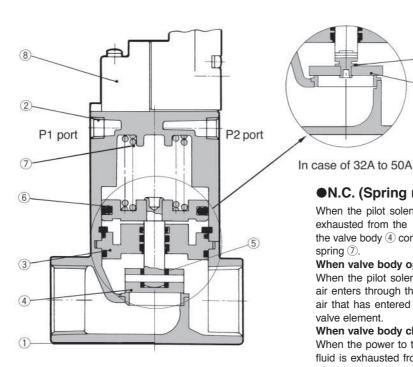

#### (Symbol)

v: Flow speed(m/s)


Q: Flow rate(d/min)


d: Piping bore size(mm)






## **VNC**





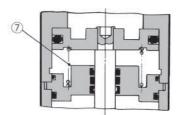
#### Construction



#### N.C. (Spring return normally closed)

4

When the pilot solenoid valve ® is not energized (or when air is exhausted from the P<sub>1</sub>/P<sub>2</sub> port in case of the air operated style), the valve body 4 connected to the piston 6 is closed by the return spring 7


#### When valve body opens

When the pilot solenoid valve is energized (or when pressurized air enters through the P1 port of the air operated style), the pilot air that has entered under the piston moves upward to open the valve element.

#### When valve body closes

When the power to the pilot solenoid valve is turned off (or when fluid is exhausted from the P1 port of the air operated style), the pilot air under the piston is exhausted, and the return spring closes the valve element.

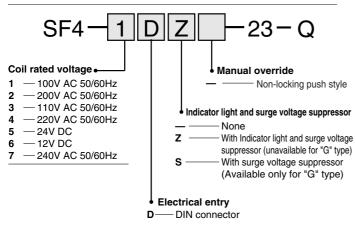
N.O.



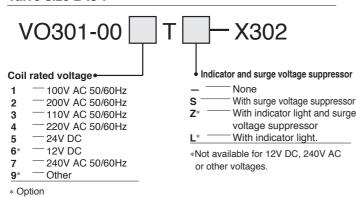
## **Component Parts**

| No. | Description          | Material        | Note                    |  |  |  |
|-----|----------------------|-----------------|-------------------------|--|--|--|
| 1   | Body assembly        | Bronze          | Coated                  |  |  |  |
| 2   | Cover assembly       | Aluminium alloy | Platinum silver painted |  |  |  |
| 3   | Plate assembly       | Metal           | Valve seal, NBR/FKM     |  |  |  |
| 4   | Valve body           | Stainless steel |                         |  |  |  |
| (5) | Valve cover          | NBR/FKM         | 32A to 50A: O ring      |  |  |  |
| 6   | Piston assembly      | Aluminium alloy |                         |  |  |  |
| 7   | Return spring        | Piano wire      |                         |  |  |  |
| (8) | Pilot solenoid valve | _               |                         |  |  |  |

#### ●N.O. (Spring return normally open)


In contrast with the N.C., when the pilot solenoid valve is not energized (or when air is exhausted from the P2 port of the air operated style), the valve body is open by the return sping. When the pilot solenoid valve is energized (or when pressurized air enters thorough the P2 port of the air operated style), the valve body closes.

#### **Replacement Parts**


|     | _                  |       |                     |              | Part No.  |                                                      |          |           |           |           |  |  |  |  |  |
|-----|--------------------|-------|---------------------|--------------|-----------|------------------------------------------------------|----------|-----------|-----------|-----------|--|--|--|--|--|
| No. | No. Description    |       | Description VNC1□□□ |              | VNC2□□□   | VNC3□□□                                              | VNC4□□□  | VNC5□□□   | VNC6□□□   | VNC7□□□   |  |  |  |  |  |
|     |                    |       |                     | -6A, 8A, 10A | -10A, 15A | -20A                                                 | -25A     | -32A      | -40A      | -50A      |  |  |  |  |  |
| (3) | Plate              |       |                     | VN1-A3CA     | VN2-A3CA  | VN3-A3CA                                             | VN4-A3CA | VN5-A3CA  | VN6-A3CA  | VN7-A3CA  |  |  |  |  |  |
| (3) | assembly           |       |                     | VN1-A3CB     | VN2-A3CB  | VN2-A3CB VN3-A3CB                                    |          | VN5-A3CB  | VN6-A3CB  | VN7-A3CB  |  |  |  |  |  |
| (5) | Valve cover        | Valve | NBR                 | _            | VN2-      | 12CA                                                 | VN4-12CA | AS568-010 | AS568-011 | AS568-012 |  |  |  |  |  |
| (3) | 32A to 50A: O ring |       | FKM                 | _            | VN2-      | 12CB                                                 | VN4-12CB | ASS00-010 | ASS00-011 | A3300-012 |  |  |  |  |  |
| (8) | Pilot solenoid     | valve |                     | SF4-□□□-23-Q |           | VO301-00□T□-X302 (Refer to How to Order on p.4.2-26) |          |           |           |           |  |  |  |  |  |

#### **How to Order Pilot Solenoid Valve**

#### Valve size 1



#### Valve size 2 to 7



## **A** Precautions

#### **External Pilot**

#### **⚠** Caution

For piping to pilot port (P1, P2)

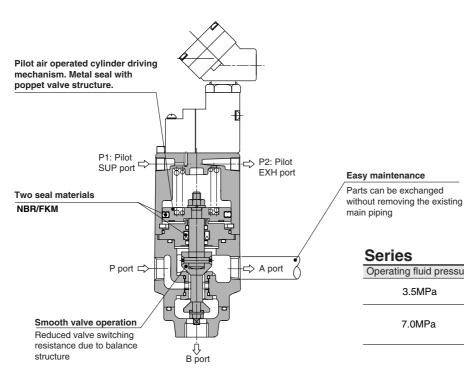
Piping should be according to the below.

|      | Air op                            | erated         | Solenoid      |  |  |
|------|-----------------------------------|----------------|---------------|--|--|
| Port | VNC□0 <sup>1</sup> <sub>4</sub> □ | VNC□02□        | VNC□121□      |  |  |
| P1   | External pilot                    | Bleed nort     |               |  |  |
| P2   | Bleed port                        | External pilot | Pilot exhaust |  |  |

Installing silencer to the exhaust port and bleed port is recommended for noise reduction and reducing dust.

#### **Piping**

#### **⚠** Caution


When high temperature fluid is used, use the fittings and tube with heat-resistant type. (Self-align fittings, copper tube, etc.)

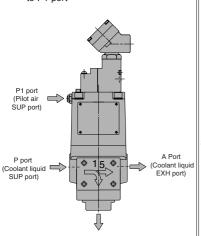
## 3.5MPa, 7.0MPa **High Pressure Coolant Valve**

# Series VNH

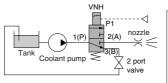
#### Corresponding to high speed grinding and long drilling processes

Valve for high pressure coolant liquid (up to 3.5 MPa or 7.0 MPa) that is ideal for lubrication, dust blowing and cooling.



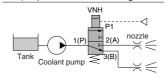

#### **Series**

| Port                   | Port size                              |
|------------------------|----------------------------------------|
| 3 port                 | 3/8(10A), 1/2(15A)<br>3/4(20A), 1(25A) |
| 2 port<br>(Large flow) | 3/8(10A), 1/2(15A)<br>3/4(20A), 1(25A) |
|                        | 3 port                                 |


## **Application examples**

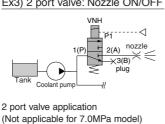
## **Piping**

Primary side (supply side): P port Secondary side (exhaust side): A and B port Supply pilot air higher than 0.25MPa to P1 port




#### 3 port valve (3.5MPa, 7.0MPa) Ex1) 3 port valve: Reducing load to pump

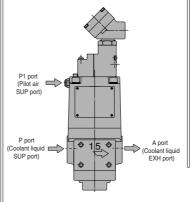



For reducing load to pump, coolant liquid is returned form B port to tank in each time.

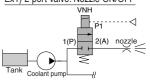
#### Ex2) 3 port valve: Switching nozzle



Switching nozzles on supplying coolant liquid


#### Ex3) 2 port valve: Nozzle ON/OFF

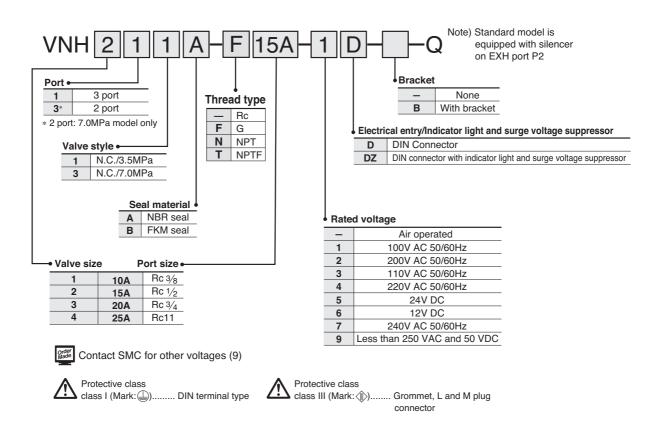



#### 2 port valve (7.0MPa)

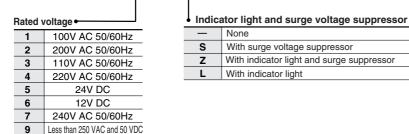
## Primary side (supply side): P port

Secondary side (exhaust side): A and B port Supply pilot air higher than 0.25MPa to P1 port.




#### Ex1) 2 port valve: Nozzle ON/OFF






**VNH** 

### **How to Order**











#### **Option**

| Description                      |  | Part No. |         |         |         |  |  |  |  |
|----------------------------------|--|----------|---------|---------|---------|--|--|--|--|
| Description                      |  | VNH1□□   | VNH2□□  | VNH3□□  | VNH4□□  |  |  |  |  |
| Bracket (with bolt and washer) B |  | VNH1-16  | VNH2-16 | VNH3-16 | VNH4-16 |  |  |  |  |



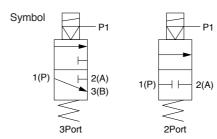


### **Specifications**

|                 |                |                                                               |                                                                      |          | 3 p                | ort valve          |                   |            |                   |                   | 2 port v          | /alve    |                    |  |
|-----------------|----------------|---------------------------------------------------------------|----------------------------------------------------------------------|----------|--------------------|--------------------|-------------------|------------|-------------------|-------------------|-------------------|----------|--------------------|--|
| Model           |                | VNH111 A                                                      | VNH211 A                                                             | VNH311   | VNH411 A           | VNH113 A           | VNH213 A          | VNH313 A   | VNH413 A          | VNH133 A          | VNH233 A          | VNH333 A | VNH433 A           |  |
|                 |                | -10A                                                          | -15A                                                                 | -20A     | -25A               | -10A               | -15A              | -20A       | -25A              | -10A              | -15A              | -20A     | –25A               |  |
| Operating flui  | d pressure     |                                                               | 0 to 3.5MPa 0 to 7.0MPa                                              |          |                    |                    |                   |            |                   |                   |                   |          |                    |  |
| Fluid           |                | Fluid                                                         |                                                                      |          |                    |                    |                   |            |                   |                   |                   |          |                    |  |
| Operation       |                |                                                               | External pilot solenoid/Air operated                                 |          |                    |                    |                   |            |                   |                   |                   |          |                    |  |
| Operating fluid | VNH□□ 1/3 A    |                                                               |                                                                      |          |                    |                    | –5 to 60°C        | /–5 to 60° | С                 |                   |                   |          |                    |  |
| temperature     | VNH□□ 1/3 B    | −5 to 60°C/−5 to 99°C                                         |                                                                      |          |                    |                    |                   |            |                   |                   |                   |          |                    |  |
|                 | Pressure       |                                                               | 0.25 to 0.7MPa                                                       |          |                    |                    |                   |            |                   |                   |                   |          |                    |  |
| Pilot air       | Temperature    |                                                               | −5 to 50°C                                                           |          |                    |                    |                   |            |                   |                   |                   |          |                    |  |
|                 | Lubrication    | Not required (Use turbin oil class 1, ISO VG32 if lubricated) |                                                                      |          |                    |                    |                   |            |                   |                   |                   |          |                    |  |
| Proof pressu    | re             | 5.5MPa 10.5MPa                                                |                                                                      |          |                    |                    |                   |            |                   |                   |                   |          |                    |  |
| Ambient tem     | perature       | −5 to 50°C *                                                  |                                                                      |          |                    |                    |                   |            |                   |                   |                   |          |                    |  |
| Max. operatir   | g frequency    | 20 times/min                                                  |                                                                      |          |                    |                    |                   |            |                   |                   |                   |          |                    |  |
| Mounting orie   | entation       |                                                               |                                                                      |          |                    |                    | Vertical          | upwards    |                   |                   |                   |          |                    |  |
| Port size       |                | Rc 3/8                                                        | Rc 1/2                                                               | Rc 3/4   | Rc1                | Rc 3/8             | Rc 1/2            | Rc 3/4     | Rc1               | Rc 3/8            | Rc 1/2            | Rc 3/4   | Rc1                |  |
| Orifice size    |                | ø7.1 **                                                       | ø8.7 **                                                              | ø10.6 ** | ø14.3 **           | ø3.9 **            | ø5.2 **           | ø6.2 **    | ø7.3 **           | ø8 **             | ø9.5 **           | ø13.5 ** | ø15.8 **           |  |
| Flow rate       | Effective area | 22mm <sup>2</sup>                                             | 41mm <sup>2</sup>                                                    | 58mm²    | 112mm <sup>2</sup> | 7.2mm <sup>2</sup> | 13mm <sup>2</sup> | 18mm²      | 25mm <sup>2</sup> | 30mm <sup>2</sup> | 43mm <sup>2</sup> | 86mm²    | 120mm <sup>2</sup> |  |
|                 | NI/min         | 1177.80                                                       | 1177.80 2257.45 3140.80 6085.30 392.60 687.05 981.50 1374.10 1668.55 |          |                    |                    |                   |            |                   | 1668.55           | 2355.60           | 4711.20  | 6477.90            |  |
| Pilot port size | •              | Rc                                                            | 1/8                                                                  | Rc       | 1/4                | Rc                 | 1/8               | 1/8 Rc 1/4 |                   |                   | Rc 1/8            |          | Rc 1/4             |  |
| Weight          |                | 2kg                                                           | 3.1kg                                                                | 5.6kg    | 8.2kg              | 2kg                | 3.1kg             | 5.6kg      | 8.2kg             | 2kg               | 3.1kg             | 5.6kg    | 8.2kg              |  |
| Face-to-face    | dimension      | 60mm                                                          | 80mm                                                                 | 100mm    | 115mm              | 60mm               | 80mm              | 100mm      | 115mm             | 60mm              | 80mm              | 100mm    | 115mm              |  |



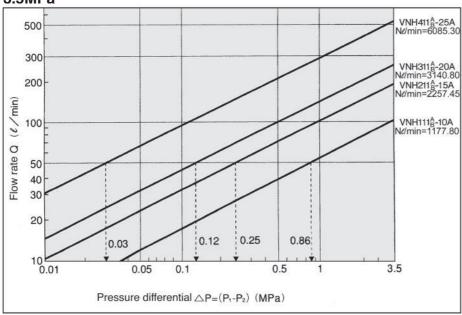
\*No freezing allowed


\*\*Equivalent size



## **Pilot Operated Solenoid Valve Specifications**

| •                               |          |         | •                                           |  |  |  |  |
|---------------------------------|----------|---------|---------------------------------------------|--|--|--|--|
| Pilot operated solenoi          | id valve |         | VO301-00□T□-X302 -Q                         |  |  |  |  |
| Electrical entry                |          |         | DIN Connector                               |  |  |  |  |
| Coil rated voltage AC(50/60/Hz) |          | 0/Hz)   | 100V, 200V, other voltages (Option)         |  |  |  |  |
| Con rated voltage               | DC       |         | 24V, other voltages (Option)                |  |  |  |  |
| Applicable voltage ra           | ange     |         | -15% to +10% of the rated voltage           |  |  |  |  |
| Coil insulation                 |          |         | Class B or equivalent (130°C)               |  |  |  |  |
| Temperature rise                |          |         | 70°C or less (Application of rated voltage) |  |  |  |  |
| Apparent power                  | 100      | Inrush  | 12VA(50Hz), 10.5VA(60Hz)                    |  |  |  |  |
| Apparent power                  | AC       | Holding | 7.5VA(50Hz), 6VA(60Hz)                      |  |  |  |  |
| Power consumption DC            |          |         | 4.8W                                        |  |  |  |  |
| Manual override                 |          |         | Non-locking push style                      |  |  |  |  |






## VNH

#### Flow Characteristics





#### <How to Read The Graph>

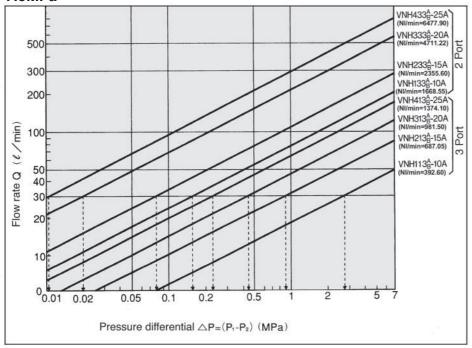
Pressure differential of coolant liquid whose flow rate is 50d/min

VNH411 $^{A}$ <sub>B</sub>(N $\ell$ /min=6085.30):  $\triangle P \cong 0.03$ MPa  $VNH311^{A}_{B}(N\ell/min=3140.80): \triangle P \cong 0.12MPa$ VNH211<sup>A</sup>B(N $\ell$ /min=2257.45):  $\triangle P \cong 0.25MPa$  $VNH111_{B}(N\ell/min=1177.80): \triangle P \cong 0.86MPa$ 

#### <How to Calculate Flow>

• Calculation by Cv factor 
$$Q{=}14.2 \cdot Cv \cdot \sqrt{\frac{10.2\Delta P}{G}} \cdot \dots \cdot \ell/min$$

· Calculation by effective area


$$Q{=}0.8\cdot S\cdot \sqrt{\frac{10.2\cdot \Delta P}{G}}\ \dots \dots \ell/min$$

#### (Symbol)

(Syllibdi)
Q : Flow rate(d/min)
ΔP: Pressure differential P1-P2(MPa)
P1 : Primary pressure(MPa)
P2 : Secondary pressure(MPa)
S : Effective area(mm²) S≅17667.00 Nd/min

: Cv factor : Specific gravity Water=1

#### **7.0MPa**



#### <How to Read The Graph>

Pressure differential of coolant liquid whose flow rate is 30t/min:

 $VNH433_{B}(Nd/min=6477.90): \triangle P \cong 0.01MPa$ VNH333 $^{A}$ <sub>B</sub>(N $^{A}$ min=4514.90):  $\triangle P \cong 0.12$ MPa VNH233 $^{A}_{B}$ (Nt/min=2355.60):  $\triangle P \cong 0.08MPa$  $VNH133^{A_{B}}(Nd/min=1668.55)$ :  $\triangle P \cong 0.16MPa$ VNH413 $^{A}$ <sub>B</sub>(N $\ell$ /min=1374.10):  $\triangle P \cong 0.23MPa$ VNH313<sup>A</sup>B(Nd/min=981.50): △P ≈ 0.45MPa VNH213 $^{A}$ <sub>B</sub>(N $\ell$ /min=687.05):  $\triangle P \cong 0.9MPa$ VNH113 $A_B$ (N $\ell$ /min=392.60):  $\triangle P \cong 0.8MPa$ 

#### <How to Calculate Flow>

Q=14.2 · Cv · 
$$\sqrt{\frac{10.2\Delta P}{G}}$$
 ..... $\ell$ /min

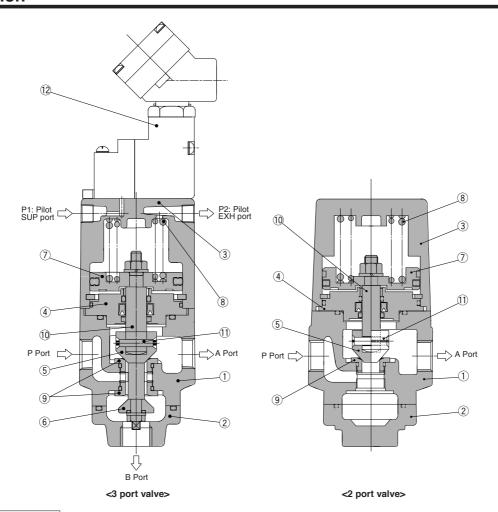
· Calculation by effective area

Q=0.8 · S · 
$$\sqrt{\frac{10.2 \cdot \Delta P}{G}}$$
 ..... $\ell$ /min

Q : Flow rate(t/min)

△P: Pressure differential P1-P2(MPa)

P<sub>1</sub>: Primary pressure(MPa)


P2 : Secondary pressure(MPa)

S : Effective area(mm<sup>2</sup>) S  $\cong$  17667.00 Nt/min

Cv: Cv factor

G : Specific gravity Water=1

## Construction



#### **Operation principles**

When the pilot operated solenoid valve 1 is not energised, the valve element A 5 connected to the piston 7 is closed by the return spring 8. Then valve element B 6 connected to the valve element A 5 is open. When the pilot operated solenoid valve 2 is energized, the pilot air supplied to the bottom of the piston 7 moves upward to open the valve element A 5 and closes the valve element B 6. Because rod 0 is connected to valve element A 5 by parallel pin 1. Valve element becomes free to incline and it certainly reaches valve seat.

#### **Component Parts**

| 00   | imponent i ai a      | ,                        |            |
|------|----------------------|--------------------------|------------|
| No.  | Description          | Material                 | Note       |
| 1    | Body                 | Cast iron                | Coated     |
| 2    | Undercover           | Cast iron                | Coated     |
| 3    | Cover                | Aluminium alloy          |            |
| 4    | Plate                | Iron                     |            |
| (5)  | Valve element A      | Stainless Steel          |            |
| 6    | Valve element B      | Stainless Steel          |            |
| 7    | Piston               | Aluminium alloy          |            |
| 8    | Return spring        | Piano wire               |            |
| 9    | Valve seat           | Stainless Steel          |            |
| 10   | Rod                  | Stainless steel          |            |
| 11)  | Parallel pin         | Stainless Steel          |            |
| (12) | Pilot solenoid valve | Refer to How to Order of | n p.4.2-28 |

## ⚠ Precautions

#### How to Use 2 Port Valve (VNH□11)

#### **⚠** Caution

When plug is screwed to B port, use concave top plug. If using plug whose top is flat, valve element in the body may be pushed up and the valve cannot be closed.



②VNH□13 is not available to use as 2 port valve by plugging B port. Use 2 port valve VNH□33.

#### **Piping**

#### 

When high temperature fluids are is used, use the fittings and tube with heat-resistant. (Self-align fittings, copper tube, etc.)



#### **Dimensions**



**Dimensions** (mm) Main port Model Pilot port Α В С D Ε F G Н 2 port 3 port Rc(PT) 1/8 60 235.5 60 46 34 24 135 50 77 VNH2□□□ A-15A 2-Rc 1/2 3-Rc 1/2 Rc 1/8 80 265 77 60 40 36 164.5 60 95.5 2-Rc 3/4 3-Rc 3/4 VNH3□□□ A-20A Rc 1/4 100 300 96 76 200 79 111 50 41 2-Rc1 3-Rc1 Rc 1/4 115 319.5 113 85 60 50 219 90 119

| Model         | J  | К     | L  | М  | N  | 0    | Р   | Q   | R    | S    | Т   | U     | V                  |
|---------------|----|-------|----|----|----|------|-----|-----|------|------|-----|-------|--------------------|
| VNH1□□□       | _  | 202.5 | 29 | 25 | 30 | 37   | 75  | 88  | 34   | 10.5 | 62  | 6 X 8 | M5 X 0.8 Depth 5.5 |
| VNH2□□□ A-15A | 20 | 232   | 36 | 30 | 40 | 43   | 100 | 118 | 44.5 | 16   | 70  | 7 X 0 | M6 X 1 Depth 6     |
| VNH3□□□ å-20A | 24 | 267   | 48 | 35 | 50 | 50.5 | 126 | 148 | 60.5 | 19.5 | 92  | 9 X 2 | M8 X 1.25 Depth 6  |
| VNH4□□□ A-25A | 24 | 286.5 | 51 | 38 | 56 | 58.5 | 141 | 163 | 66.5 | 15.5 | 109 | 9 X 2 | M8 X 1.25 Depth 6  |

# 2 Port Valve for Steam Steam Valve

# Series VND

## 2 Port Valve for Steam MAX. 180°C

**.** 

A

By the adoption of a PTFE seal, the valve is suited for steam.

Body material: Bronze (BC 6), Stainless steel

Large valve capacity

Ne/min 687.05 to 42204.50

With indicator (option)


Possible to mount the operation confirmation indicator on all valves.

Cylinder actuation system by the external pilot air

PTFE seal



2 types — N.C., N.O. Screw-in (6A to 50A) Flange (32F to 50F)





#### **How to Order Body option** Thread type Standard (Copper alloy) Rc S\* Stainless steel body G $* \ \, \text{Threaded type only}$ N NPT NPTF DS-EVND 2 0 Air operated Option None $B^*$ With bracket L With indicator With bracket and indicator BL\* \* Only valve size 1, 2, 3, 4 Valve size Valve type Port size Symbol Port Orifice dia. Symbol Symbol 0 2 4 (mm) size N.C. N.C. N.O. 6A 1/8 1 Ø7 8A 1/4 10A 3/8 • 10A 3/8 2 Ø15 1/2 15A 3 Ø20 20A 3/4 4 Ø25 25A 1 32A 1 1/4 5 Ø32 • • 32F 11/4 B Flange 40A $1\frac{1}{2}$ 6 Ø40 40F 11/2 B Flange 50A 2 7 Ø50 **50F** 2B Flange

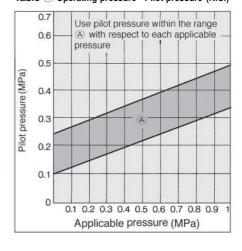




#### Model

| Model       |           |              |           |                  |        |
|-------------|-----------|--------------|-----------|------------------|--------|
| Maralal     | D         | Orifice size | Flow rate |                  | Weight |
| Model       | Port size | ø (mm)       | Ne/min    | Effe. area (mm²) | (kg)   |
| VND10□D-6A  | 1/8       |              | 687.05    | 13               |        |
| VND10□D-8A  | 1/4       | 7 15         | 981.50    | 18               | 0.3    |
| VND10□D-10A | 3/8       |              | 1275.95   | 23               |        |
| VND20□D-10A | 98        |              | 3729.70   | 70               | 0.6    |
| VND20□D-15A | 1/2       |              | 4907.50   | 90               |        |
| VND30□D-20A | 3/4       | 20           | 7852.00   | 140              | 0.9    |
| VND40□D-25A | 1         | 25           | 11778.00  | 220              | 1.4    |
| VND50□D-32A | 11/4      | 32           | 17667.00  | 320              | 2.3    |
| VND60□D-40A | 11/2      | 40           | 27482.00  | 500              | 3.6    |
| VND70□D-50A | 2         | 50           | 43304.50  | 770              | 5.7    |

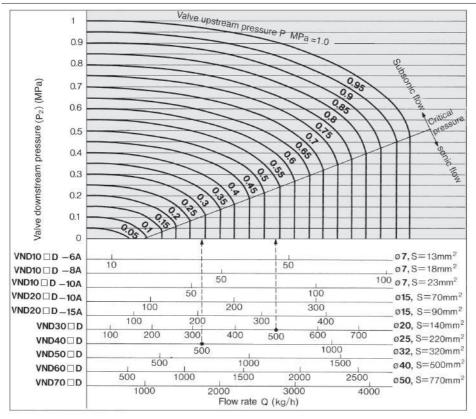
**Valve Specifications** 


| Fluid                    |          |         | Steam                                                          |  |
|--------------------------|----------|---------|----------------------------------------------------------------|--|
| Fluid temperature        |          |         | −5 to180°C*                                                    |  |
| Ambient temperature      |          | ure     | −5 to 60°C*                                                    |  |
| Proof pressure           |          |         | 1.5MPa                                                         |  |
| Operating pressure range |          | e range | 0 to 0.97MPa                                                   |  |
|                          | Pressure | N.C.    | 0.3 to 0.7MPa                                                  |  |
| External pilot air       | riessuie | N.O.    | 0.1 to 0.5MPa Reffer to table ① for application                |  |
|                          | Lubri    | cation  | Not required (Use turbine oil No. 1(ISO VG32), if lubricated.) |  |
|                          | Temp     | arature | −5 to 60°C*                                                    |  |



**Symbol** 

| Oyiliboi   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| Valve      | N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N.O.           |  |  |
| Valve size | Normally closed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Normally open  |  |  |
| VND1       | $\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ | P <sub>2</sub> |  |  |
| VND        | P <sub>1</sub> A — — B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P <sub>2</sub> |  |  |


Table ① Operating pressure - Pilot pressure (N.O.)





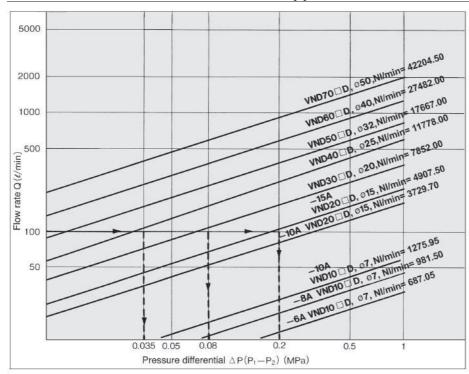
#### **Flow Characteristics**

#### **Saturated Steam**



#### **How to Read The Graph**

In the sonic flow region: For a flow of 500 Kg/h VND30 $\square$ D (Orifice Ø20)········P $^1 \cong 0.55$ MPa VND40 $\square$ D (Orifice Ø25)·······P $^1 \cong 0.3$ MPa


#### **How to Calculate Flow**

| ① Equation in the domain of subsonic flow         |
|---------------------------------------------------|
| Calculation by Cv factor                          |
| Q=198·Cv·√△P(P2+1.033) ······kg/h                 |
| Calculation by effective area                     |
| Q=11·S· $\sqrt{\triangle P(P_2+1.033)}$ ·····kg/h |
| 2 Equation in the domain of sonic flow            |
| Calculation by Cv factor                          |
| Q=98.9·Cv·(p1+1.033)·····kg/h                     |
| Calculation by effective area                     |
| Q=5.51·S·(P <sub>1</sub> +1.033)·····kg/h         |
|                                                   |



#### **Flow Characteristics**

#### Water/VND 2 to 7 should be N.O. to suppress water hammer.



#### **How to Read The Graph**

In case of a water flow of 100 d/min. VND40□D (Orifice ø25) ······△P ≅ 0.035MPa VND30□D (Orifice Ø20) ······△P ≅ 0.08MPa

VND20□D (Orifice ø15)

·△P ≅ 0.2MPa

#### How to Calculate Flow/Water

<Water and other liquids>

· Calculation by Cv factor

Q=14.2·Cv·
$$\sqrt{\frac{10.2\Delta P}{G}}$$
 ······ $\ell$ /min

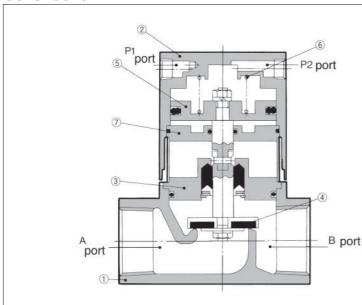
· Calculation by effective area

Q=0.8·S·
$$\sqrt{\frac{10.2\Delta P}{G}}$$
 ······ $\ell$ /min

Note) Calculation error of fluid with viscosity of 50 cst or less will be very small.

#### Symbol

Q: Flow rate (Air and other liquids \( \ell \)min)

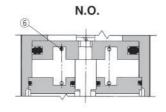

ΔP: Pressure differential(P1-P2) P1: Upstream pressure (MPa) P2: Downstream pressure(MPa)

S : Effective area(mm<sup>2</sup>) S  $\approx$  17667.00N $\ell$ /min

Cv: Cv factor (/)

G : Specific gravity ( / ) Air/Water =1

#### Construction




### **Component Parts**

|     | •                  |                       |                         |  |  |  |
|-----|--------------------|-----------------------|-------------------------|--|--|--|
| No. | Description        | Material              | Note                    |  |  |  |
| 1   | Body               | Bronze*               | Clear coated            |  |  |  |
| 2   | Cover assembly     | Aluminum alloy        | Platinum silver painted |  |  |  |
| 3   | Plate assembly     | Brass*                | PTFE, EPR, FKM          |  |  |  |
| 4   | Valve element      | Valve material (PTFE) | Brass*                  |  |  |  |
| (5) | Piston assembly    | Aluminum alloy        | _                       |  |  |  |
| 6   | Return spring      | Piano wire            | _                       |  |  |  |
| 7   | Second plate ass'y | Aluminum alloy        | _                       |  |  |  |
|     |                    |                       |                         |  |  |  |



\* Body option S is made of stainless steel.



#### **Operation Principles**

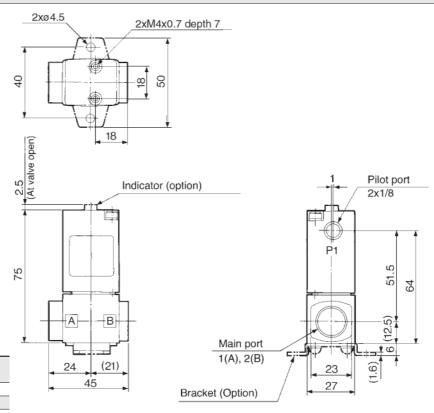
#### VND $\square$ $0^{\circ}_{4}\square$ (N.C.):

When fluid is exhausted from the P1 port, the valve (4) connected with the piston (5) is closed by the return spring (6)

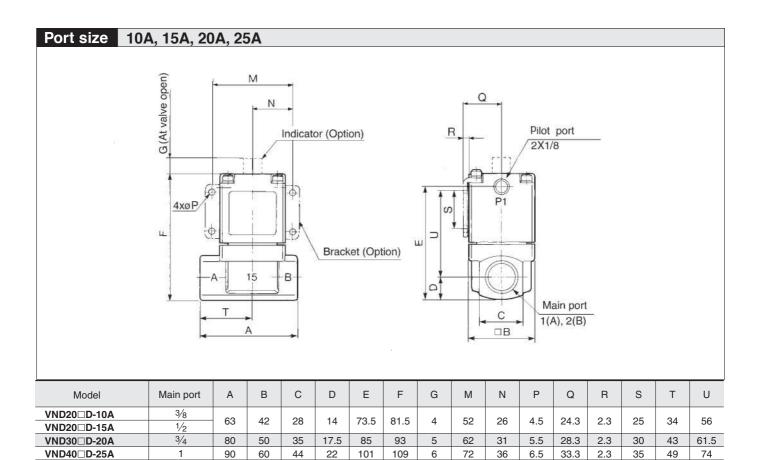
#### When valve opens

When pressurized air enters through the P1 port, the valve piston moves upward by the pilot air that enters below the piston and the valve element opens.

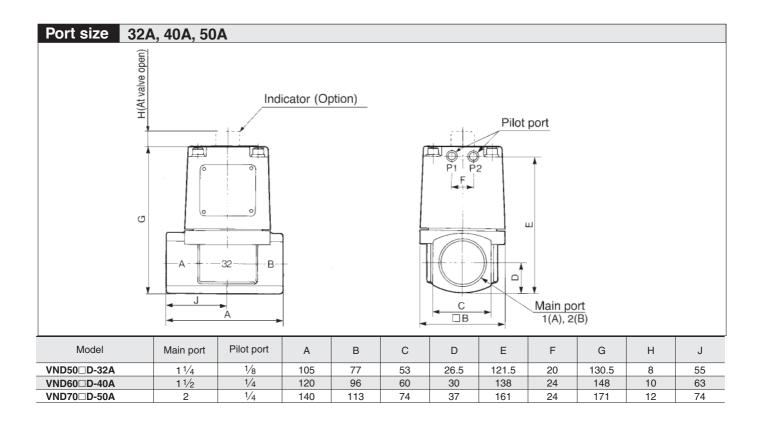
#### · When valve closes:


When fluid is exhausted from the P1 port, the pilot air below the piston is exhausted and the valve element is closed by the return spring.

#### VND□02□(N.O.)


In contrast with the N.C., when air is exhausted from the P2 port, the return spring opens the valve element. Pressurized air that enters through the P2 port closes the valve element.

## **VND**


#### Port size 6A, 8A, 10A



| Model       | Main port |  |
|-------------|-----------|--|
| VND10□D-6A  | 1/8       |  |
| VND10□D-8A  | 1/4       |  |
| VND10□D-10A | 3/8       |  |







## **⚠** Precautions

#### **External Pilot**

#### ▲ Caution

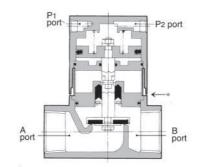
Piping of pilot port (P1, P2)

P1 and p2 piping should be as follows according to the model.

| Port | VND□O□D        | VND□02D        |  |
|------|----------------|----------------|--|
| P1   | External pilot | Exhaust        |  |
| P2   | Exhaust        | External pilot |  |

It is recomended to mount a silencer in the bleed port to prevent entry of dust into the valve.

#### Piping


#### **⚠** Caution

To use the piping with a high temperature fluid, use heat resistant fittings and tubes. (Self-align fittings, copper pipe, etc.)

### **Adiabatic Space**

#### **⚠** Caution

There is a space between body and cover (\*: approximate 1mm) for adiabatic effect.

