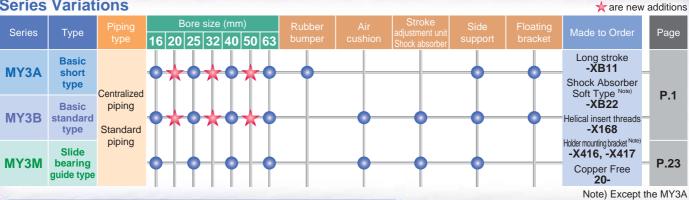
## New **Mechanically Jointed Rodless Cylinders**

**Basic short type (Rubber bumper)** Series MY3A

### NEW

**Bore sizes** ø20, ø32, ø50 added

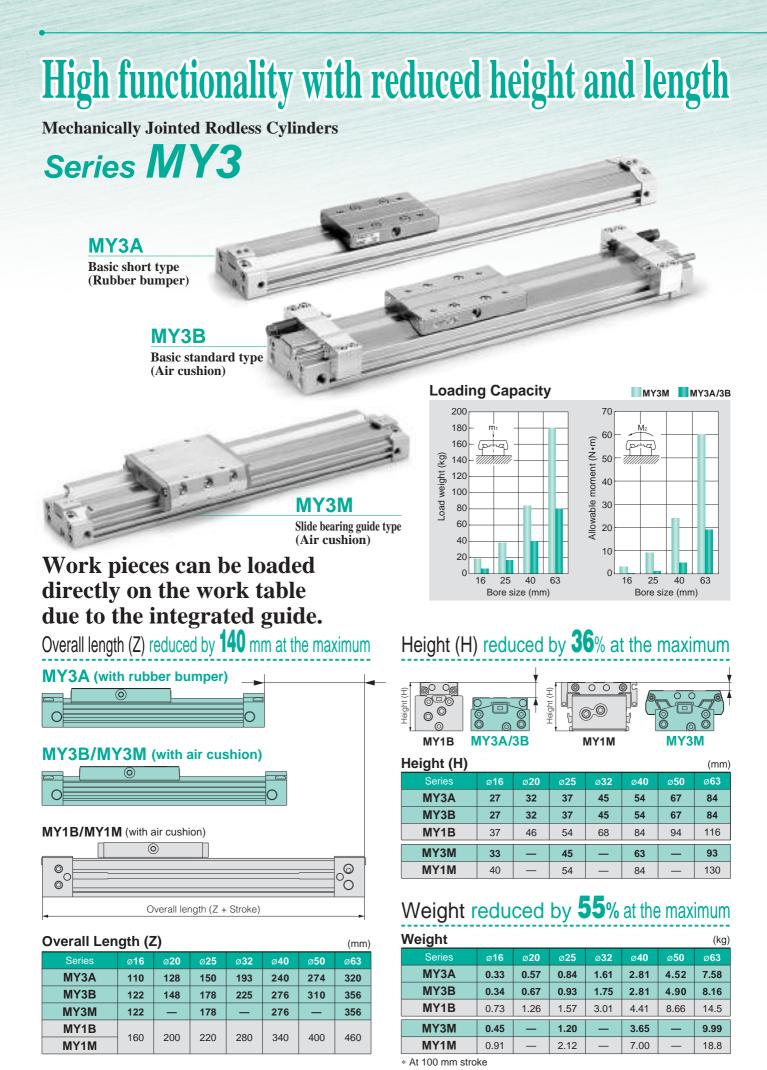

**Basic standard type (Air cushion)** Series MY3B

NEW

**Bore sizes** ø20, ø32, ø50 added

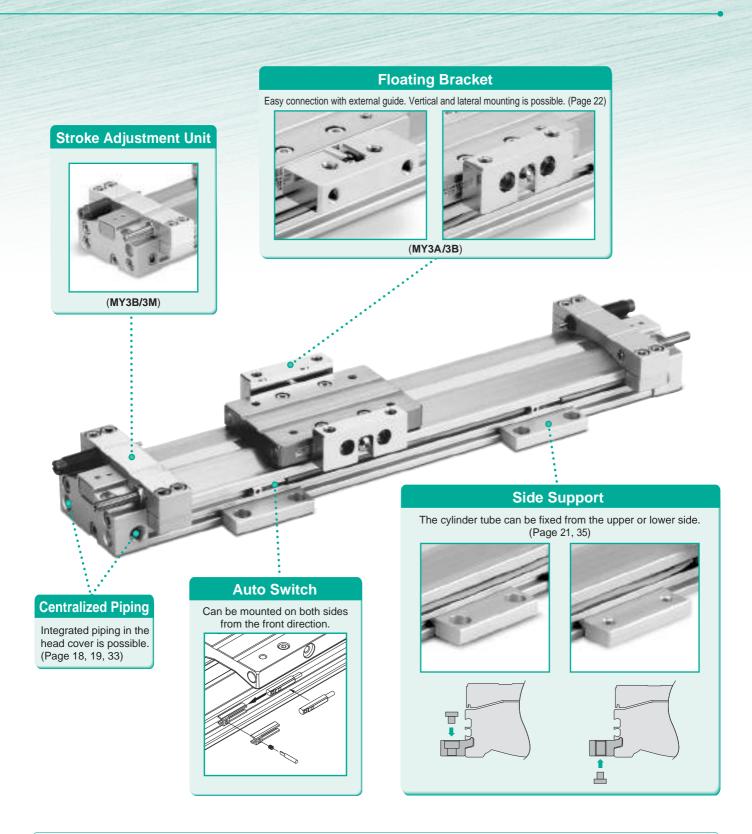
Slide bearing guide type (Air cushion) Series MY3M

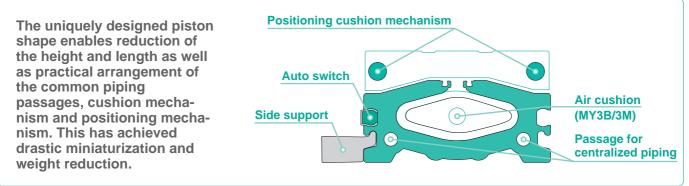
#### **Series Variations**




### Shock Absorber Soft Type Series RJ Installed Cylinder (-XB22 spec.) added

Soft stopping enabled at stroke end.


Two types of shock absorbers are selectable according to operating environment.






Features 1

**SMC** 





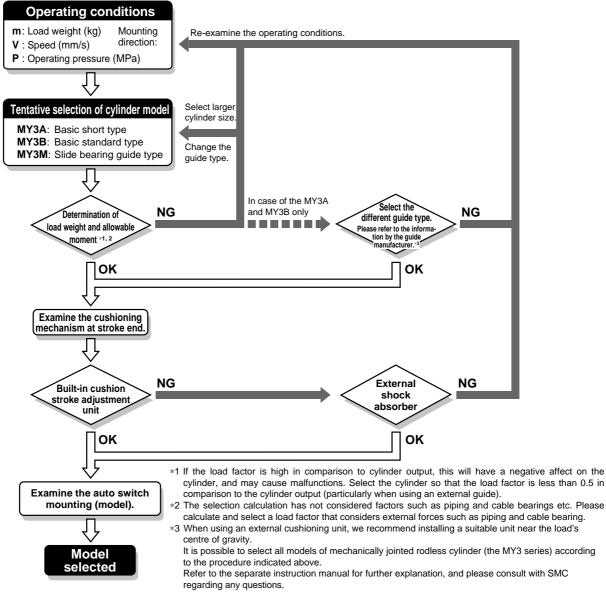
## Series MY3 Model Selection

The following are steps for selecting the MY3 series which is best suited to your application.

#### **Guideline for Tentative Model Selection**

| Series Type |                          | Guideline for tentative model selection |                       |                  |                | Nata                                                                             |
|-------------|--------------------------|-----------------------------------------|-----------------------|------------------|----------------|----------------------------------------------------------------------------------|
|             |                          | Stroke accuracy                         | Use of external guide | Direct loaded    | Table accuracy | Note                                                                             |
| MY3A        | Basic short type         |                                         | 0                     | $\bigtriangleup$ |                | Generally combined with a separate guide making it, by length, more compact.     |
| MY3B        | Basic standard type      | O                                       | 0                     | 0                |                | Generally combined with a separate guide, when stroke accuracy is required.      |
| МҮЗМ        | Slide bearing guide type | O                                       | ×                     | 0                | 0              | Mounting a work piece directly on the product, when stroke accuracy is required. |

 $\bigcirc$  Most suitable  $\bigcirc$  Suitable  $\triangle$  Usable  $\times$  Not recommended


Note 1) The table accuracy means the amount of table deflection when a moment is applied.

Note 2) Travelling parallelism is not guaranteed for this cylinder. Please consult with SMC if the travelling parallelism or stroke intermediate position needs to be precise.

#### **Selection Flow Chart**

When an external guide is used, the selection confirmation of the guide capacity should follow the selection procedure of the external guide.

The MY3 series allow direct load application within the allowable range for the built-in guide. The payload in this case will vary depending on the driving speed and the mounting orientation of the cylinder. Please refer to the flow below and confirm the selection. (For more detailed description of the selection flow, please refer to the instruction manual.)



SVC

### **A** Warning

Reduction circuits or shock absorbers may be necessary.

If the driven object is fast, or the weight is large, the cylinder cushion alone may not be able to absorb the impact. In this case, install a reduction circuit before the cushion, or install an external shock absorber to reduce the impact. Please check the machine's rigidity as well.

\* External shock absorbers must meet the characteristics listed on page 11. Cylinders may be

|                                  |                                               | damag                              | ged if shock absorbers that do not have the recommended characteristics are use | d.             |
|----------------------------------|-----------------------------------------------|------------------------------------|---------------------------------------------------------------------------------|----------------|
| How to mount<br>a load           | Stroke positioning                            | Shock absorber                     | Maximum operating speed                                                         | (mm/s)<br>1500 |
|                                  |                                               | Rubber bumper                      | MY3A                                                                            |                |
|                                  | Cylinder stroke end                           | Air cushion                        | MY3B                                                                            |                |
| Direct loaded                    |                                               | All cushion                        | MY3M                                                                            |                |
|                                  | Stroke adjustment unit<br>(Option: L, H unit) |                                    | MY3M                                                                            | Note 5)        |
|                                  | External stopper                              | External shock                     | MY3A MY3B Note 3)                                                               |                |
|                                  |                                               | absorber Note 2)                   | MY3M                                                                            | Note 3)        |
|                                  | Cylinder stroke end                           | Rubber bumper                      | MY3A                                                                            |                |
| Use of external<br>guide Note 1) |                                               | Air cushion                        | MY3B                                                                            |                |
|                                  | Stroke adjustment unit<br>(Option: L, H unit) | Shock absorber                     | MY3B Note 4)<br>Note 5)                                                         |                |
|                                  | External stopper                              | External shock<br>absorber Note 2) | MY3A MY3B                                                                       | Note 3)        |

Note 1) Mechanically jointed rodless cylinders can be used with a direct load within the allowable range for each guide type, however, careful alignment is necessary for connection to a load which has an external guide mechanism. The mounting bracket for the external guide and the floating bracket must be mounted in a position that guarantees freedom of movement to the floating Y and Z axial. Ensure that the floating bracket is set so that the thrust transmission section has even contact.

\* For details on the floating Y and Z axial, refer to the coordinates and moments in the selection method on page 22.

Note 2) The shock absorber must meet the conditions mentioned on page 10 and 11. Note 3) As the external shock absorber, a unit with appropriate capacity and features should be installed close to the load centre of gravity.

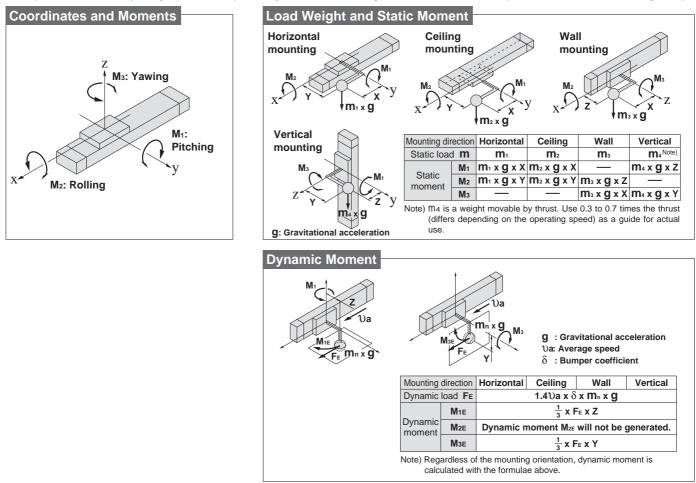
Note 4) Use the stroke adjustment unit of the MY3B series with an external guide.

Maximum operating speed

Note 5) Shown below are the details of the maximum operating speed for the stroke adjustment unit.

#### MY3 Series, Maximum Operating Speed when Using the Stroke Adjustment Unit

| MY3 Series, M | MY3 Series, Maximum Operating Speed when Using the Stroke Adjustment Unit Unit: mm/s |                         |                                         |                                          |  |
|---------------|--------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|------------------------------------------|--|
| Series        | Bore size (mm)                                                                       | Stroke adjustment range | Inside the fine stroke adjustment range | Outside the fine stroke adjustment range |  |
|               | 16. 20                                                                               | L unit                  | 800                                     | 500                                      |  |
| MY3B          | 10, 20                                                                               | H unit                  | 1000                                    | 800                                      |  |
|               | 25, 32, 40, 50, 63                                                                   | L, H unit               | 1000                                    | 800                                      |  |
| MY3M          | 16, 25, 40, 63                                                                       | L, H unit               | 1500                                    | 800                                      |  |


Outside the fine stroke adjustment range means that when a intermediate fixing spacer (short spacer, long spacer) is used. Intermediate fixing spacer  $\rightarrow$  Refer to page 30.



### Series MY3

#### Types of Moment and Load Weight Applied to Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation, load and position of the centre of gravity.



#### **Calculation of the Guide Load Factor**

1. Maximum load weight (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations. \* To evaluate, use  $\mathcal{V}a$  (average speed) for (1) and (2), and  $\mathcal{V}$  (impact speed  $\mathcal{V}$  = 1.4 $\mathcal{V}a$ ) for (3). Calculate m max for (1) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, M3)

|              |       |                     | Note 1)                 | Note 2)                           |
|--------------|-------|---------------------|-------------------------|-----------------------------------|
| Sum of guide | ΣQ -  | Load weight [m]     | Static moment [M]       | Dynamic moment [ME]               |
| load factors | 20. – | Maximum load weight | Allowable static moment | Allowable dynamic moment $\geq 1$ |
|              |       | [m max]             | [Mmax]                  | [Memax]                           |

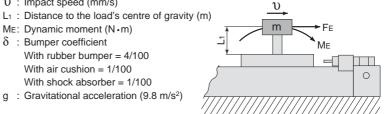
Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper). Note 3) Depending on the shape of the work piece, multiple moments may occur. When this happens, the sum of the load factors ( $\Sigma \alpha$ ) is the total of all such moments.

2. Reference formulas [Dynamic moment at impact]

- Use the following formulas to calculate dynamic moment when taking stopper impact into consideration.  $\upsilon$  : Impact speed (mm/s)
- m : Load weight (kg)
- F : Load (N)
- FE : Load equivalent to impact (at impact with stopper) (N)

•  $F_E \cdot L_1 = 4.57 \Im \delta m L_1 (N \cdot m)$ 


Ua: Average speed (mm/s)

U = 1.4Ua (mm/s) FE = 1.4Ua x  $\delta$  x m·g

M : Static moment (N • m)

1 Note 5)

ME: Dynamic moment (N·m)  $\delta$  : Bumper coefficient With rubber bumper = 4/100With air cushion = 1/100 With shock absorber = 1/100g : Gravitational acceleration (9.8 m/s<sup>2</sup>)

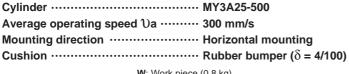


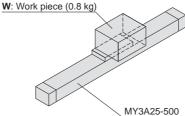
Note 4)  $1.4\tilde{\upsilon}a\delta$  is a dimension less coefficient for calculating impact force.

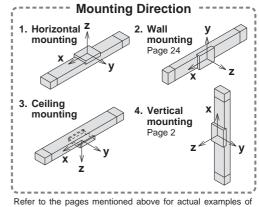
Note 5) Average load coefficient =  $\left(\frac{1}{3}\right)$ :

This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

3. For detailed selection procedure, please refer to pages 2, 3, 24, 25,

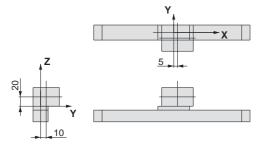

#### Front matter 3


.'. Me =




#### **Calculation of Guide Load Factor**

#### 1 Operating Conditions








\* For ceiling mounting, refer to Best Pneumatics No. 2,

#### 2 Load Blocking



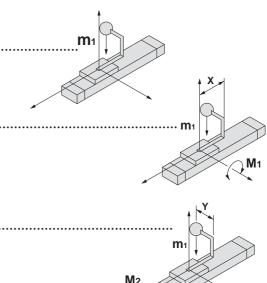
#### Work Piece Weight and Centre of Gravity

page 998

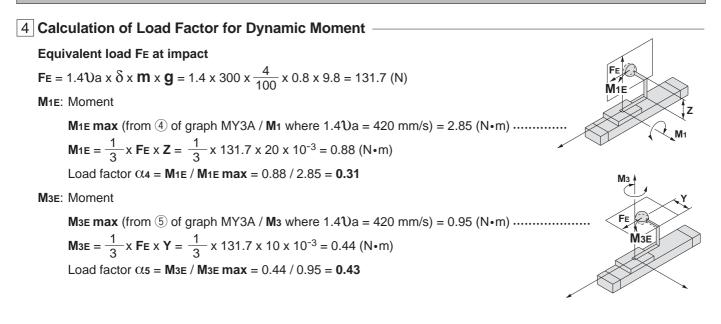
| Work piece | Weight | Centre of gravity |        |        |  |
|------------|--------|-------------------|--------|--------|--|
| no.        | (m)    | X-axis            | Y-axis | Z-axis |  |
| W          | 0.8 kg | 5 mm              | 10 mm  | 20 mm  |  |

#### 3 Calculation of the Load Factor for Static Load

m1: Weight


**m**<sub>1</sub> max (from 1) of graph MY3A/m<sub>1</sub>) = 10.7 (kg) ..... Load factor  $\alpha_1 = m_1/m_1$  max = 0.8/10.7 = 0.08

M1: Moment


M1 max (from 2) of graph MY3A/M1) = 4 (N·m) ..... M1 = M1 x g x X = 0.8 x 9.8 x 5 x 10<sup>-3</sup> = 0.04 (N·m) Load factor  $\alpha_2$  = M1/M1 max = 0.04/4 = 0.01

M2: Moment

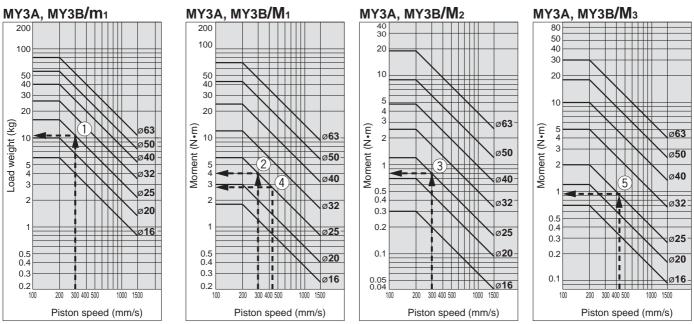
M2 max (from ③ of graph MY3A/M2) = 0.8 (N·m) ..... M3 =  $\mathbf{M}_1 \times \mathbf{g} \times \mathbf{Y} = 0.8 \times 9.8 \times 10 \times 10^{-3} = 0.08$  (N·m) Load factor  $\alpha_3 = \mathbf{M}_2/\mathbf{M}_2$  max = 0.08/0.8 = 0.1



#### **Calculation of the Guide Load Factor**



#### 5 Sum and Examination of the Guide Load Factors -


 $\Sigma \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.08 + 0.01 + 0.1 + 0.31 + 0.43 = 0.93 \le 1$ 

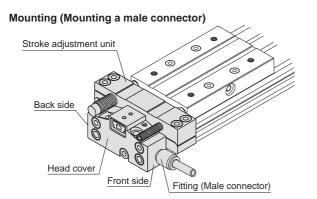
The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

In an actual calculation, when the sum of the guide load factors  $\Sigma \alpha$  in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series.

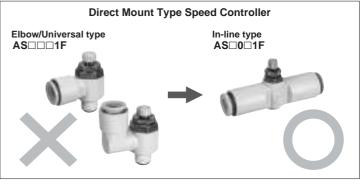
Load Weight

#### **Allowable Moment**




\* Refer to page 25 for the MY3M.

#### Mounting of Fitting and Speed Controller


**SMC** 

When the stroke adjustment unit is used with MY3B and MY3M, the fittings mountable on the front or back port will be limited to those listed below.

In such cases, since **direct mount type speed controllers cannot be mounted**, use in-line type speed controllers. (Except MY3B40/50/63 and MY3M63)



Refer to Best Pneumatics No. 6 for the details of fittings and speed controllers.



| Cylinder<br>model size | Connection<br>thread | Applicable<br>tubing<br>O.D. (mm) | Fitting type                       | Fitting model |
|------------------------|----------------------|-----------------------------------|------------------------------------|---------------|
|                        |                      |                                   | Male connector                     | KQ2H23-M5     |
|                        |                      |                                   | Male elbow                         | KQ2L23-M5     |
|                        |                      | 3.2                               | Hexagon socket head male connector | KQ2S23-M5     |
|                        |                      |                                   | Male connector                     | KQ2H23-M5     |
| MY3□16                 | M5                   |                                   | Male elbow                         | KQ2L23-M5     |
|                        |                      |                                   | Male elbow                         | KQ2L04-M5     |
|                        |                      | 4                                 | Male elbow                         | KQ2L04-M5     |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S04-M5     |
|                        |                      | 6                                 | Male elbow                         | KQ2L06-M5     |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S23-M5     |
|                        |                      | 3.2                               | Male connector                     | KQ2H23-M5     |
|                        |                      |                                   | Male elbow                         | KQ2L23-M5     |
|                        |                      |                                   | Male connector                     | KQ2H04-M5     |
| MY3□20                 | M5                   | 4                                 | Male elbow                         | KQ2L04-M5     |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S04-M5     |
|                        |                      |                                   | Male connector                     | KQ2H06-M5     |
|                        |                      | 6                                 | Male elbow                         | KQ2L06-M5     |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S06-M5     |
|                        |                      | 3.2                               | Male connector                     | KQ2H23-01S    |
|                        |                      |                                   | Male elbow                         | KQ2L23-01S    |
|                        |                      |                                   | Male connector                     | KQ2H04-01□S   |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S04-01□S   |
|                        |                      | 4                                 | Male connector                     | KQ2H04-01S    |
| MY3 25                 | Rc1/8                |                                   | Male elbow                         | KQ2L04-01S    |
|                        | KC1/O                |                                   | Hexagon socket head male connector | KQ2S04-01S    |
|                        |                      |                                   | Male connector                     | KQ2H06-01□S   |
|                        |                      |                                   | Male elbow                         | KQ2L06-01□S   |
|                        |                      | 6                                 | Hexagon socket head male connector | KQ2S06-01□S   |
|                        |                      |                                   | Male elbow                         | KQ2L06-01S    |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S06-01S    |
|                        |                      |                                   | Male connector                     | KQ2H04-01S    |
|                        |                      | 4                                 | Male elbow                         | KQ2L04-01S    |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S04-01S    |
|                        |                      |                                   | Male connector                     | KQ2H06-01S    |
| MY3□32                 | Rc1/8                | 6                                 | Male elbow                         | KQ2L06-01S    |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S06-01S    |
|                        |                      |                                   | Male connector                     | KQ2H08-01S    |
|                        |                      | 8                                 | Male elbow                         | KQ2L08-01S    |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S08-01S    |

| Cylinder<br>model size | Connection<br>thread | Applicable<br>tubing<br>O.D. (mm) | Fitting type                       | Fitting model |
|------------------------|----------------------|-----------------------------------|------------------------------------|---------------|
|                        |                      | 4                                 | Male connector                     | KQ2H04-02S    |
|                        |                      |                                   | Male connector                     | KQ2H06-02S    |
|                        |                      | 6                                 | Male elbow                         | KQ2L06-02S    |
| MY3□40                 | Rc1/4                |                                   | Hexagon socket head male connector | KQ2S06-02S    |
|                        |                      |                                   | Male connector                     | KQ2H08-02S    |
|                        |                      | 8                                 | Male elbow                         | KQ2L08-02S    |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S08-02S    |
|                        |                      |                                   | Male connector                     | KQ2H06-03S    |
|                        |                      | 6                                 | Male elbow                         | KQ2L06-03S    |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S06-03S    |
|                        |                      |                                   | Male connector                     | KQ2H08-03S    |
|                        | Rc3/8                | 8                                 | Male elbow                         | KQ2L08-03S    |
| MY3□50                 |                      |                                   | Hexagon socket head male connector | KQ2S08-03S    |
|                        |                      | 10                                | Male connector                     | KQ2H10-03S    |
|                        |                      |                                   | Male elbow                         | KQ2L10-03S    |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S10-03S    |
|                        |                      |                                   | Male connector                     | KQ2H12-03S    |
|                        |                      | 12                                | Male elbow                         | KQ2L12-03S    |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S12-03S    |
|                        |                      | 6                                 | Male connector                     | KQ2H06-03S    |
|                        |                      | 8                                 | Male elbow                         | KQ2L08-03S    |
|                        |                      |                                   | Male connector                     | KQ2H10-03S    |
|                        |                      | 10                                | Male elbow                         | KQ2L10-03S    |
| MY3□63                 | Rc3/8                |                                   | Hexagon socket head male connector | KQ2S10-03S    |
|                        |                      |                                   | Male connector                     | KQ2H12-03S    |
|                        |                      | 12                                | Male elbow                         | KQ2L12-03S    |
|                        |                      |                                   | Hexagon socket head male connector | KQ2S12-03S    |
|                        |                      | 16                                | Male elbow                         | KQ2L16-03S    |



### Series MY3 **Specific Product Precautions**

Be sure to read before handling.

Refer to back cover for the Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) and the Operation Manual for Actuators and Auto Switches Precautions.

Selection

### A Warning

#### 1. When applying a load directly, set the design so that all the mounting threads on the slide table's upper surface are used.

Parts have been made smaller to achieve a compact size. If only some of the threads are used when mounting the load, the impact that results from the operation may cause extremely concentrated stress or disfiguration and may negatively affect operation.

In worst cases the cylinder may be damaged, so please be careful.

### /!\Caution

1. Provide intermediate supports for long stroke cylinders.

Provide intermediate supports for cylinders with long strokes to prevent rod damage due to sagging of the rod, deflection of the tube, vibration and external loads.

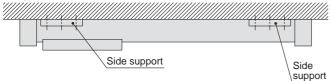
For detailed information, please refer to "Guide for Using Side Support" on pages 21 and 35.

2. For intermediate stops, use a dual-side pressure control circuit.

Since the mechanically jointed rodless cylinders have a unique seal structure, slight external leakage may occur. Controlling intermediate stops with a 3 position valve cannot hold the stopping position of the slide table (slider). The speed at the restarting state also may not be controllable. Use the dual-side pressure control circuit with a PAB-connected 3 position valve for intermediate stops.

#### 3. Cautions on less frequent operation

When the cylinder is used extremely infrequently, operation may be interrupted in order for anchoring and a change lubrication to be performed or service life may be reduced.


Mounting

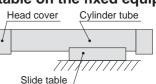
### Caution

1. At each end of the cylinder, secure a mounting surface with a 5 mm or longer area that contacts the lower side of the cylinder.

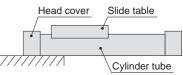


2. If the cylinder is mounted on the ceiling or wall under the condition where high load factors or impacts are expected, use side supports, in addition to the fixing bolts on the head cover, to support both ends of the cylinder tube.




Mounting

### A Caution


Do not mount a slide table on the fixed equip-

ment surface. It may cause damage or malfunctions since an excessive load is applied to the bearing

- 4. Consult with SMC when mounting in a cantilevered way. Since the cylinder body deflects, it may cause malfunctions. Please consult with SMC when using it this way.
- 5. Do not mount cylinders as they are twisted.



Mounting with a slide table (slider)



Mounting in a cantilevered way

When mounting, be sure for a cylinder tube not to be twisted. The flatness of the mounting surface is not appropriate, the cylinder tube is twisted, which may cause air leakage due to the detachment of a seal belt, damage a dust seal band, and cause malfunctions.

#### 6. Do not generate negative pressure in the cylinder tube.

Take precautions under operating conditions in which negative pressure is generated inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt. Do not generate negative pressure in the cylinder by forcibly moving it with an external force during the trial operation or dropping it with self-weight under the non-pressure state, etc. When the negative pressure is generated, slowly move the cylinder by hand and move the stroke back and forth. After doing so, if air leakage still occurs, please consult with SMC.

#### **Operating Environment**

### **Marning**

SM

- 1. Avoid use in environments where a cylinder will come in contact with coolants, cutting oil, droplet of water, adhesive matter, or dust, etc. Also avoid operation with compressed air that contains drainage or foreign matter, etc.
  - Foreign matter or liquids on the cylinder's interior or exterior can wash out the lubricating grease, which can lead to deterioration and damage of the dust seal band and seal materials, causing a danger of malfunction.

When operating in locations with exposure to water and oil drops, or in dusty locations, provide protection such as a cover to prevent direct contact with the cylinder, or mount so that the dust seal band surface faces downward, and operate with clean compressed air.

2. The product is not designed for clean room usage.

If clean room usage is considered, please consult with SMC.

## Series MY3A

Basic, short type (Rubber bumper)

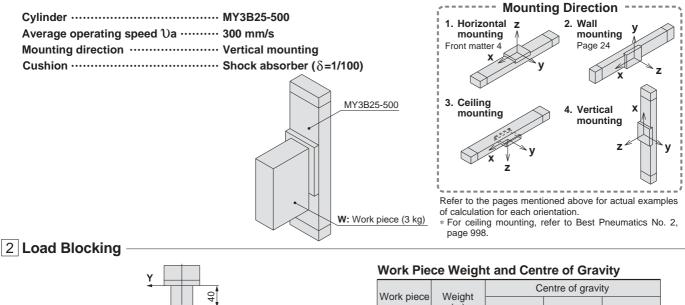
ø16, ø20, ø25, ø32, ø40, ø50, ø63

19:

## Series MY3B

Basic, standard type (Air cushion)

ø16, ø20, ø25, ø32, ø40, ø50, ø63


1

## Series MY3A/3B Model Selection

The following are steps for selecting the MY3 series which is best suited to your application.

#### **Calculation of Guide Load Factor**

#### 1 Operating Conditions



| Work piece | Weight | С      | entre of gravi | ty     |
|------------|--------|--------|----------------|--------|
| no.        | (m)    | X-axis | Y-axis         | Z-axis |
| W          | 3 kg   | 20 mm  | 0 mm           | 40 mm  |

m

#### 3 Calculation of Load Factor for Static Load

Y.

m: Weight

M1: Moment

**M**1 **max** (from ① of graph MY3A/3B/**M**1) = 4 (N•m) .....

Z

₹X

2

 $M_1 = M \times g \times Z = 3 \times 9.8 \times 40 \times 10^{-3} = 1.18 (N \cdot m)$ 

Load factor  $\Omega_1 = M_1 / M_2 max = 1.18 / 4 = 0.29$ 

#### **Calculation of the Guide Load Factor**

#### 4 Calculation of the Load Factor for Dynamic Moment -

Equivalent load FE at impact

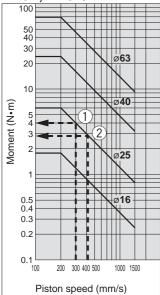
 $\mathbf{F} = 1.4 \Im \mathbf{a} \times \delta \times \mathbf{m} \times \mathbf{g} = 1.4 \times 300 \times \frac{1}{100} \times 3 \times 9.8 = 123.56 \text{ (N)}$ 

M1E: Moment

M1E max (from 2) of graph MY3A/3B/M1 where  $1.4\Im a = 420$  mm/s) = 2.86 (N·m) .... M1E =  $\frac{1}{3}$  x Fe x Z =  $\frac{1}{3}$  x 123.56 x 40 x 10<sup>-3</sup> = 1.65 (N·m) Load factor  $\Omega_2$  = M1E/M1E max = 1.65/2.86 = 0.58

#### 5 Sum and Examination of the Guide Load Factors

 $\Sigma \alpha = \Omega 1 + \Omega 2 = 0.871$ 


The above calculation is within the allowable value, and therefore the selected model can be used.

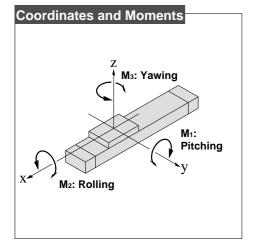
Select a shock absorber separately.

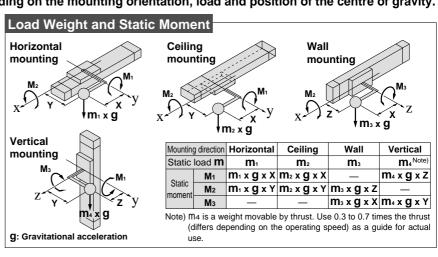
In an actual calculation, when the sum of the guide load factors  $\Sigma \alpha$  in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. Calculating the above formula is easy with the [SMC Pneumatics CAD System].

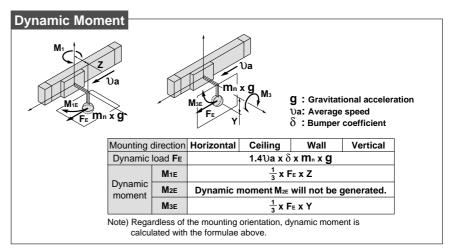
#### **Allowable Moment**

#### MY3A, MY3B/M1

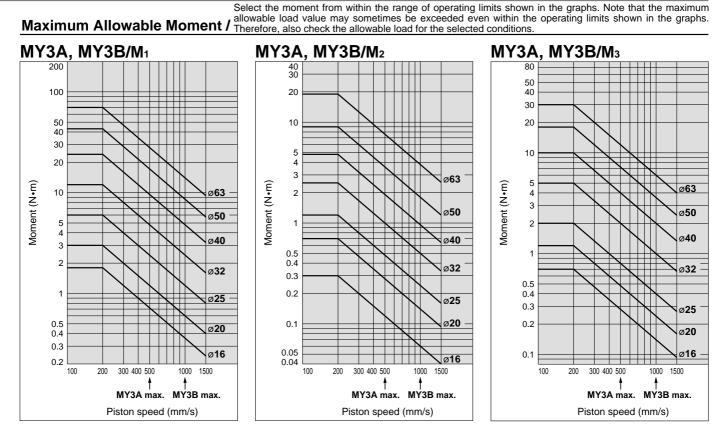



#### Maximum Allowable Moment / Maximum Allowable Load

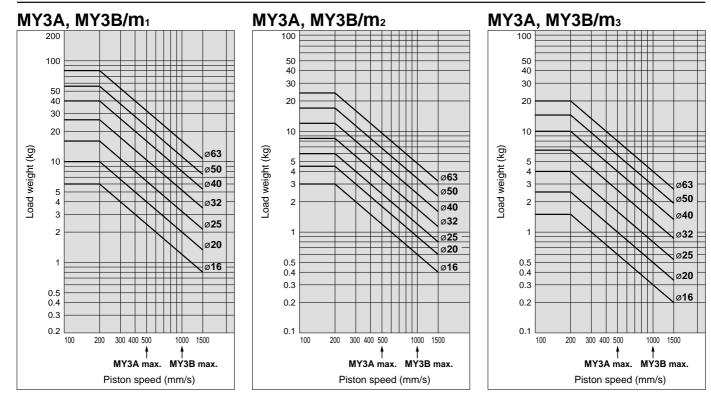

| Carias       | Bore size | Maximum Allowable Moment (N•m) |     |     | Maximum Allowable Load (kg) |                |     |
|--------------|-----------|--------------------------------|-----|-----|-----------------------------|----------------|-----|
| Series       | (mm)      | <b>M</b> 1                     | M2  | Мз  | <b>m</b> ₁                  | m <sub>2</sub> | m3  |
|              | 16        | 1.8                            | 0.3 | 0.7 | 6                           | 3              | 1.5 |
|              | 20        | 3                              | 0.7 | 1.2 | 10                          | 4.3            | 2.4 |
|              | 25        | 6                              | 1.2 | 2   | 16                          | 6              | 4   |
| MY3A<br>MY3B | 32        | 12                             | 2.5 | 5   | 26                          | 8.5            | 6.7 |
|              | 40        | 24                             | 4.8 | 10  | 40                          | 12             | 10  |
|              | 50        | 43                             | 9   | 18  | 56                          | 17             | 14  |
|              | 63        | 70                             | 19  | 30  | 80                          | 24             | 20  |


The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

#### Types of Moment and Load Weight Applied to Rodless Cylinders

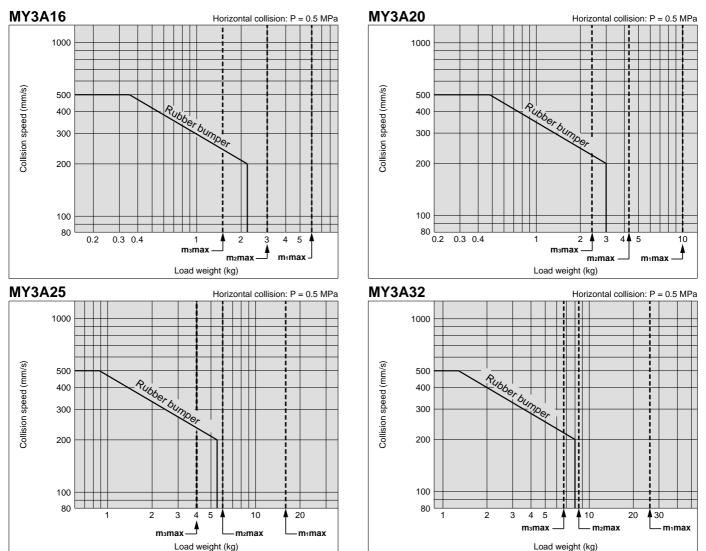

Multiple moments may be generated depending on the mounting orientation, load and position of the centre of gravity.







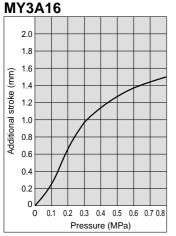

### Model Selection Series MY3A/3B

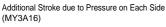


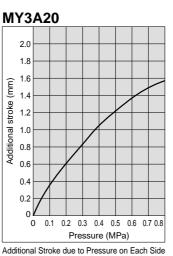

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.



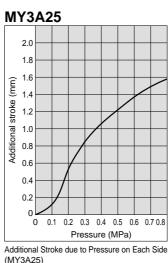
#### **Cushion Capacity**


#### Absorption Capacity of Rubber Bumper (MY3A)

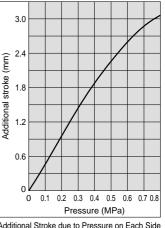




#### Rubber Bumper Displacement (Additional Stroke due to Pressure on Each Side)

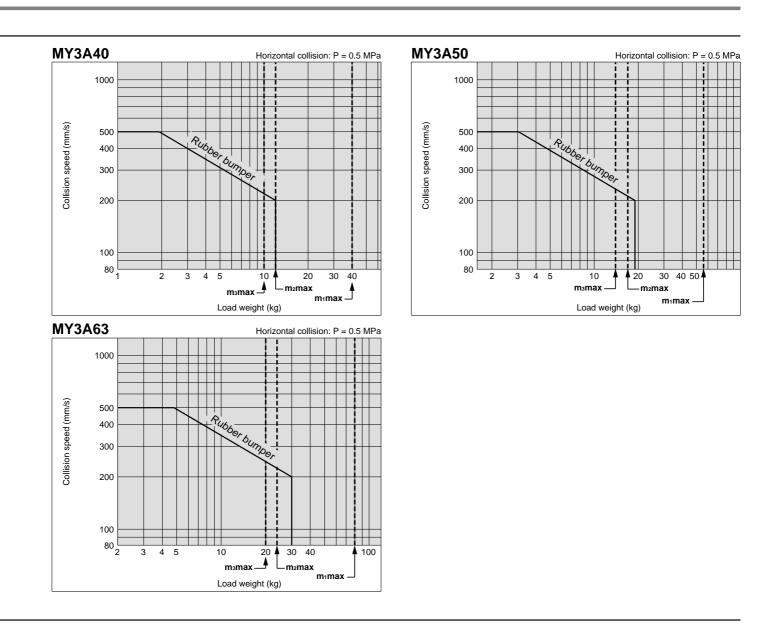
The stop position of the built-in rubber bumper of the MY3A series varies depending on the operating pressure. For alignement at the stroke end, find the guideline for the stroke end position in operation as follows. Find the incremental displacement at the operating pressure in the graph and add it to the stroke end position at no pressurization. If positioning accuracy is required for the stop position at the stroke end, consider installing an external positioning mechanism or switching to the air cushion type (MY3B).

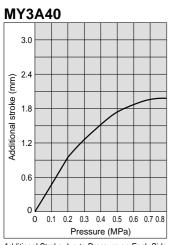

SMC

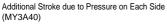


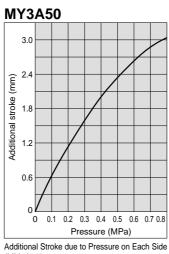






Additional Stroke due to Pressure on Each Side (MY3A20)

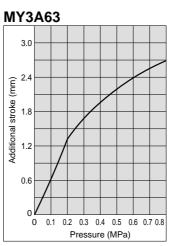




MY3A32




Additional Stroke due to Pressure on Each Side (MY3A32)

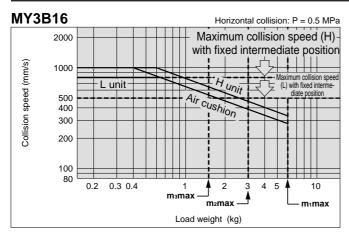


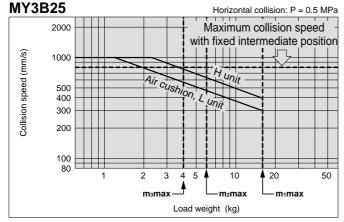


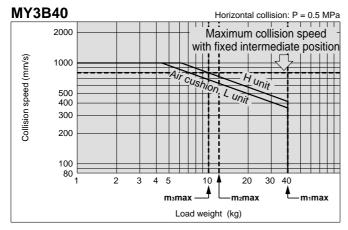


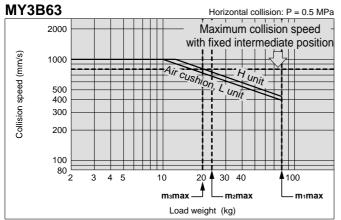


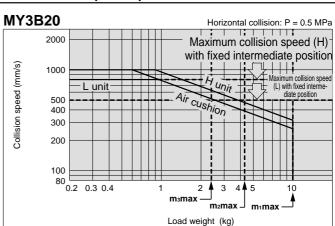

(MY3A50)

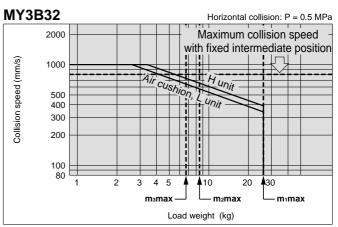

**SMC** 

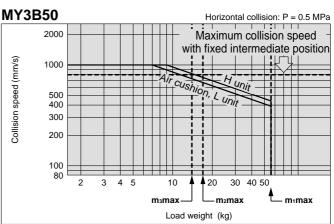




Additional Stroke due to Pressure on Each Side (MY3A63)


#### **Cushion Capacity**


#### Absorption Capacity of Air Cushion and Stroke Adjustment Unit (MY3B)



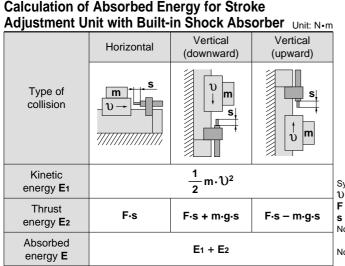












#### **Air Cushion Stroke**

**SMC** 

| Bore size (mm) | Cushion stroke |
|----------------|----------------|
| 16             | 13             |
| 20             | 16             |
| 25             | 18             |
| 32             | 22             |
| 40             | 25             |
| 50             | 28             |
| 63             | 30             |

Unit: mm



### Stroke Adjustment Unit

| Fille Sticke Auj | rine Stroke Aujustinent Kange |  |  |  |
|------------------|-------------------------------|--|--|--|
| Bore size (mm)   | Fine stroke adjustment range  |  |  |  |
| 16, 20           | 0 to -10                      |  |  |  |
| 25, 32           | 0 to -12                      |  |  |  |
| 40, 50           | 0 to -16                      |  |  |  |
| 63               | 0 to –24                      |  |  |  |

Note) The maximum operating speed will differ when the stroke adjustment unit is used outside the maximum fine stroke adjustment range (with reference to the fixed stroke end), such as at a fixed intermediate position (X416, X417). (Refer to the graph on page 8.)

Symbols

Stroke Adjustment

- U: Speed of impacting object (m/s)
- m: Weight of impacting object (kg)
   g : Gravitational acceleration (9.8 m/s<sup>2</sup>)
- **F** : Cylinder thrust (N) **s** : Shock absorber stroke (m)
- S : Shock absorber stroke (m) Note) The speed of the impacting object is measured at the time of collision with the shock absorber.
- Note) With an operating pressure of 0.6 MPa or larger, the use of a cushion or an external shock absorber conforming to the conditions on pages 10 and 11 is recommended.

#### Stroke adjustment of the adjustment bolt>

Loosen the lock nut for the adjustment bolt, adjust the stroke on the head cover side with a hexagon wrench, and secure with a lock nut.

#### <Stroke adjustment of the shock absorber: MY3B>

Loosen the two unit fixing bolts on the shock absorber side and rotate the shock absorber for stroke adjustment. Tighten the unit fixing bolts equally to secure the shock absorber. Use caution not to overtighten the fixing bolts.

(Refer to "MY3B Stroke Adjustment Unit Tightening Torque for Fixing Bolts.")

#### MY3B Stroke Adjustment Unit

| <b>Tightening Torque for</b> | Unit: N•m |                   |  |  |  |  |
|------------------------------|-----------|-------------------|--|--|--|--|
| Bore size (mm)               | Unit      | Tightening torque |  |  |  |  |
| 16, 20                       | L         | 0.7               |  |  |  |  |
| 10, 20                       | Н         | 0.7               |  |  |  |  |
| 25, 32                       | L         | 3.5               |  |  |  |  |
| 25, 52                       | Н         | 5.5               |  |  |  |  |
| 40, 50                       | L         | 13.8              |  |  |  |  |
| 40, 50                       | Н         | 13.0              |  |  |  |  |
| 63                           | L         | 27.5              |  |  |  |  |
| 05                           | Н         | 21.0              |  |  |  |  |
| •                            |           |                   |  |  |  |  |

### **A**Caution

### 1. Use caution not to have your hands caught in the unit.

When using a cylinder with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit is very narrow. Care should be taken to avoid the danger of hands being caught in this small space. Install a protective cover to prevent the risk of accidents to the human body.

#### 2. The stroke adjustment unit may interfere with the mounting bolt when mounting the cylinder on the equipment.

Loosen the unit fixing bolt and dislocate the stroke adjustment unit before mounting the cylinder. After fixing the cylinder, move the stroke adjustment unit back to the desired location and tighten the unit fixing bolt.

Use caution not to overtighten the fixing bolts.

(Refer to "MY3B Stroke Adjustment Unit Tightening Torque for Fixing Bolts".)

### **A**Caution

## 3. Use an external guide for the MY3B stroke adjustment unit.

If a stroke adjustment unit is used where a load is directly applied, the collision reaction may cause damage to the cylinder.

4. Conduct stroke adjustment with an adjustment bolt as follows:

The adjustment bolt should be secured on the same surface as the shock absorber after stroke adjustment.

If the stopper surface of the shock absorber and the end surface of the adjustment bolt are not on the same level, it may result in an unstable stop position of the slide table or reduced durability.

5. Securing the unit body

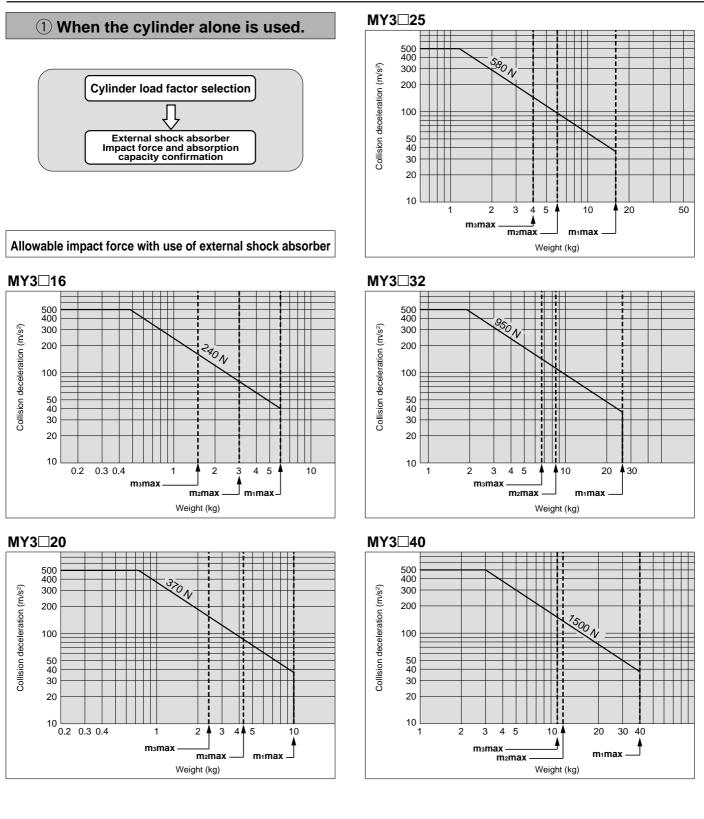
#### <MY3B>

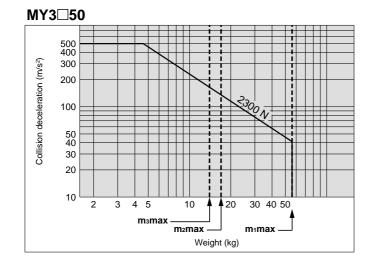
Adjustment bolt lock nut

Tighten the four unit fixing bolts equally to secure the unit body.

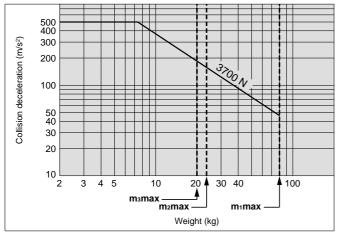
### 6. Do not fix and use the stroke adjustment unit at an intermediate position (MY3B).

If the stroke adjustment unit is fixed at an intermediate position, an error may result depending on the collision energy. In that case, the use of the holder mounting bracket for adjustment is recommended. It is provided with the "-X416" or "-X417" made-to-order specification.

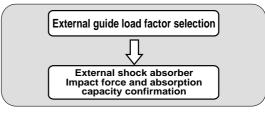

(Refer to "MY3B Stroke Adjustment Unit Tightening Torque for Fixing Bolts.")


If the stroke adjustment unit is fixed at an intermediate position, the energy absorption capacity may be different. For this reason, refer to the maximum absorbed energy listed above, and use the adjustment unit within the allowable absorption capacity.

#### External Shock Absorber Selection


When the positioning of the stop position is necessary or the absorption capacity of the built-in cushion is not sufficient, refer to the selection procedure below and consider the installation of an external shock absorber.

### Selection Confirmation Items with Use of External Shock Absorber






#### MY3□63

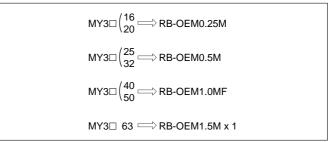


#### 2 When the external guide is used.



#### Piston Speed with Use of External Shock Absorber

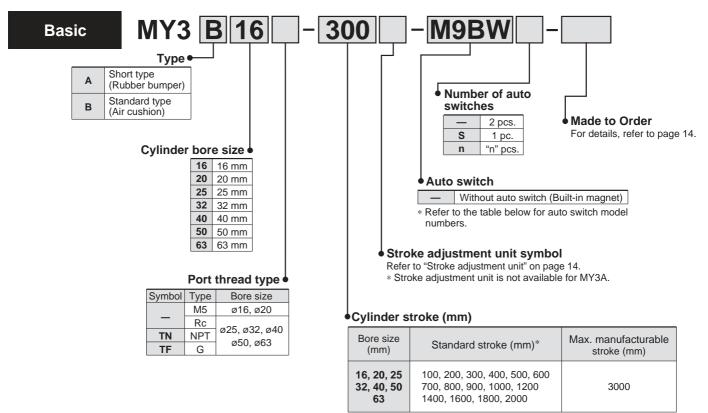
| Bore size (mm) | 16              | 20 | 25   | 32    | 40     | 50 | 63 |
|----------------|-----------------|----|------|-------|--------|----|----|
| MY3A           | 80 to 1500 mm/s |    |      |       |        |    |    |
| MY3B           |                 |    | 0010 | 15001 | 1111/5 |    |    |


An external shock absorber can be used within the above piston speed range. In conjunction with the absorption capacity selection, however, also confirm the conditions which make the shock absorber collision impact force to stay within the allowable range in the graph.

Use of an external shock absorber with conditions exceeding the allowable range may damage the cylinder.

#### To confirm the collision impact force of the shock absorber, first find the impact force or acceleration under the operating conditions using the selection information or selection software provided by the manufacturer and then, refer to the graph.

(The selection should allow a sufficient margin because the value calculated by the selection software involves an error with reference to the actual value.)


#### Example of Recommended Use of the External Shock Absorber



### **⊘**SMC

# Mechanically Jointed Rodless Cylinder/Basic Type Series MY3A/3B ø16, ø20, ø25, ø32, ø40, ø50, ø63

How to Order



Strokes are manufacturable in 1 mm increments, up to the maximum stroke. However, when the stroke is 49 mm or less, the air cushion capability lowers and multiple auto switches cannot be mounted. Pay special attention to this point.

Also when exceeding a 2000 mm stroke, specify "-XB11" at the end of the model number.

For details, refer to the "Made to Order Specifications".

#### Applicable Auto Switches/ Refer to Best Pneumatics No. 2, pages 1263 to 1371 for further information on auto switches.

|                      |                                                |                     | Ħ                      |                    | 1             | oad volta | 20      | Auto owit     | ch model | Lead    | wiro I   | onath    | (m)        |                     |            |           |  |       |      |  |  |  |   |   |            |  |
|----------------------|------------------------------------------------|---------------------|------------------------|--------------------|---------------|-----------|---------|---------------|----------|---------|----------|----------|------------|---------------------|------------|-----------|--|-------|------|--|--|--|---|---|------------|--|
| Type                 | Special function                               | Electrical<br>entry | Indicator light        | Wiring<br>(Output) |               |           | AC      | Perpendicular | In-line  | 0.5     | 1<br>(M) | 3        | 5          | Pre-wired connector | Applical   | ble load  |  |       |      |  |  |  |   |   |            |  |
|                      |                                                |                     |                        | 3-wire (NPN)       |               | 5 V. 12 V |         | M9NV          | M9N      |         |          |          | 0          | 0                   | IC circuit |           |  |       |      |  |  |  |   |   |            |  |
|                      | -                                              |                     |                        | 3-wire (PNP)       |               | J V, 12 V |         | M9PV          | M9P      |         |          |          | $ \circ $  | 0                   |            |           |  |       |      |  |  |  |   |   |            |  |
|                      |                                                |                     |                        | 2-wire             |               | 12 V      |         | M9BV          | M9B      |         |          |          | 0          | 0                   | -          |           |  |       |      |  |  |  |   |   |            |  |
| 0                    | Discussedia in discritica                      |                     |                        | 3-wire (NPN)       |               | 51/ 401   | EV 40.V | EV 40.V       | EV 10 V  | EV 40 V | 5 V 40 V | 5 V 40 V | E V 40 V   | 5 V 40 V            |            | 5 V, 12 V |  | M9NWV | M9NW |  |  |  | 0 | 0 | IC circuit |  |
| h tate               | Diagnostic indication<br>(2-colour indication) | Grommet             | Yes                    | 3-wire (PNP)       | 24 V          |           | -       | M9PWV         | M9PW     |         |          |          | 0          | 0                   | io circuit | Relay,    |  |       |      |  |  |  |   |   |            |  |
| olid state<br>switch |                                                |                     |                        | 2-wire             | 24 0          | 12 V      |         | M9BWV         | M9BW     |         |          |          | 0          | 0                   | _          | PLC       |  |       |      |  |  |  |   |   |            |  |
| Solid                |                                                |                     |                        | 3-wire (NPN)       |               | E.V. 40.V | 514014  | 5 V, 12 V     |          | M9NAV*1 | M9NA*1   | 0        | 0          |                     | 0          | 0         |  |       |      |  |  |  |   |   |            |  |
| 0                    | Water resistant<br>(2-color indication)        |                     |                        | 3-wire (PNP)       |               | 5 V, 12 V |         | M9PAV*1       | M9PA*1   | 0       | 0        |          | 0          | 0                   | IC circuit |           |  |       |      |  |  |  |   |   |            |  |
|                      |                                                |                     |                        | 2-wire             |               | 12 V      |         | M9BAV*1       | M9BA*1   | 0       | 0        |          | 0          | 0                   | —          |           |  |       |      |  |  |  |   |   |            |  |
| ed                   | switch — Gro                                   | Yes                 | 3-wire<br>(NPN equiv.) | _                  | 5 V           | _         | A96V    | A96           | •        | -       | •        | -        | -          | IC circuit          | _          |           |  |       |      |  |  |  |   |   |            |  |
| Re                   | _                                              | Grommet             |                        | 2 wire             | 24.14         | 12 V      | 100 V   | A93V*2        | A93      |         |          |          |            | —                   | _          | Relay,    |  |       |      |  |  |  |   |   |            |  |
|                      | - 00                                           | No                  | 2-wire 24 V            | 12 V               | 100 V or less | A90V      | A90     |               | -        |         | -        | -        | IC circuit | PLC                 |            |           |  |       |      |  |  |  |   |   |            |  |

\*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

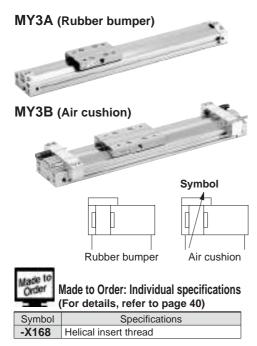
Consult with SMC regarding water resistant types with the above model numbers.

\*2 1 m type lead wire is only applicable to D-A93.

- \* Lead wire length symbols: 0.5 m ..... (Example) M9NW 1 m ..... M (Example) M9NWM
  - 3 m ..... I

Solid state auto switches marked with "O" are produced upon receipt of order. \* Separate switch spacers (BMY3-016) are required for retrofitting of auto switches.

(Example) M9NWL


5 m ······· Z (Example) M9NWZ

\* There are other applicable auto switches than listed above. For details, refer to page 36.

\* Refer to pages 1626 and 1627 for the details of auto switches with a pre-wired connector

\* Auto switches are shipped together (not assembled). (Refer to page 36 for the details of auto switch mounting.)





#### Made to Order

| Symbol | Specifications                             |
|--------|--------------------------------------------|
| -XB11  | Long stroke type                           |
| -XB22  | Shock absorber soft type<br>Series RJ type |

#### **Specifications**

| Bore size (mm)                | 16, 20                                                                                             | 25, 32         | 40                  | 50, 63 |  |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------|----------------|---------------------|--------|--|--|--|
| Fluid                         | Air                                                                                                |                |                     |        |  |  |  |
| Action                        | Double acting                                                                                      |                |                     |        |  |  |  |
| Operating pressure range      | 0.2 to 0.8 MPa 0.15 to 0.8 MPa                                                                     |                |                     |        |  |  |  |
| Proof pressure                | 1.2 MPa                                                                                            |                |                     |        |  |  |  |
| Ambient and fluid temperature |                                                                                                    | 5 to (         | 60°C                |        |  |  |  |
| Cushion                       | Rubbe                                                                                              | r bumper (MY3A | A) / Air cushion (I | MY3B)  |  |  |  |
| Lubrication                   |                                                                                                    | Not required   |                     |        |  |  |  |
| Stroke length tolerance       | 1000 mm or less <sup>+1.8</sup> / <sub>0</sub> , From 1001 mm <sup>+2.8</sup> / <sub>0</sub> Note) |                |                     |        |  |  |  |
| Port size (Rc, NPT, G)        | M5 x 0.8                                                                                           | 1/8 1/4 3/8    |                     |        |  |  |  |

Note) The tolerance of the MY3A is a value with no pressurization. When a rubber bumper is used, the stroke of the MY3A varies according to the operating pressure. To find the stroke length tolerance at each operating pressure, double the additional stroke due to pressure on each side (pages 6 and 7) and add it.

#### **Piston Speed**

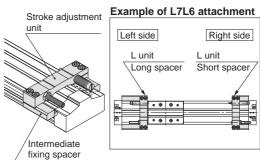
| Bore size (mm)                                       | 16                                | 20 | 25 | 32 | 40 | 50 | 63 |
|------------------------------------------------------|-----------------------------------|----|----|----|----|----|----|
| Without stroke adjustment unit (MY3A) 80 to 500 mm/s |                                   |    |    |    |    |    |    |
| Without stroke adjustment unit (MY3B)                | 80 to 1000 mm/s                   |    |    |    |    |    |    |
| Stroke adjustment unit                               | 80 to 1000 mm/s                   |    |    |    |    |    |    |
| (L and H unit/MY3B)                                  | (ø16, ø20 L unit: 80 to 800 mm/s) |    |    |    |    |    |    |
| External shock absorber (low reaction type)*         | 80 to 1500 mm/s                   |    |    |    |    |    |    |

\* Refer to "External Shock Absorber Selection" on pages 10 and 11.

When the RB series is used, operate at a piston speed that will not exceed the absorption capacity of the air cushion and stroke adjustment unit.

\* Because of its structure, the fluctuation of this cylinder's operating speed is greater than rod type cylinders. For applications that require constant speed, select an applicable equipment for the level of demand.

#### **Stroke Adjustment Unit Specifications**


| Bore size (mm)                                  |                   | 16, 20  |         | 25, 32     |         | 40, 50     |        | 63         |        |
|-------------------------------------------------|-------------------|---------|---------|------------|---------|------------|--------|------------|--------|
| Unit symbol                                     |                   | L       | Н       | L          | Н       | L          | Н      | L          | Н      |
| Shock absorber model                            |                   | RB0806  | RB1007  | RB1007     | RB1412  | RB1412     | RB2015 | RB2015     | RB2725 |
| Shock absorber soft ty<br>Series RJ (-XB22) mod |                   | RJ0806H | RJ1007H | RJ1007H    | RJ1412H | RJ1412H    | _      | _          | _      |
| Stroke adjustment                               | Without spacer    | 0 to    | -10     | 0 to       | -12     | 0 to       | -16    | 0 to       | -24    |
| range by intermediate                           | With short spacer | -10 to  | o –20   | -12 t      | o –24   | -16 t      | o –32  | -24 te     | o –48  |
| fixing spacer (mm)                              | With long spacer  | -20 to  | o –30   | -24 to -36 |         | -32 to -48 |        | -48 to -72 |        |

\* Stroke adjustment range is applicable for one side when mounted on a cylinder.

#### Stroke Adjustment Unit Symbol

| $\sim$                      |                              |                      |         | Rię                      | ght side s               | troke adj        | ustment u                                             | unit              |                  |
|-----------------------------|------------------------------|----------------------|---------|--------------------------|--------------------------|------------------|-------------------------------------------------------|-------------------|------------------|
|                             |                              |                      | Without | L: With lov<br>+ Adjustm | v load shock<br>ent bolt | k absorber       | H: With high load shock absorber<br>+ Adjustment bolt |                   |                  |
|                             |                              |                      | unit    |                          | With short spacer        | With long spacer |                                                       | With short spacer | With long spacer |
|                             | Without unit                 |                      | Nil     | SL                       | SL6                      | SL7              | SH                                                    | SH6               | SH7              |
| stroke                      |                              | oad shock absorber + | LS      | L                        | LL6                      | LL7              | LH                                                    | LH6               | LH7              |
| stro<br>nt L                | Adjustment                   | With short spacer    | L6S     | L6L                      | L6                       | L6L7             | L6H                                                   | L6H6              | L6H7             |
| de                          | bolt                         | With long spacer     | L7S     | L7L                      | L7L6                     | L7               | L7H                                                   | L7H6              | L7H7             |
| t si<br>ust                 | H: With high load shock abso |                      | HS      | HL                       | HL6                      | HL7              | Н                                                     | HH6               | HH7              |
| Left side str<br>adjustment | Adjustment                   | With short spacer    | H6S     | H6L                      | H6L6                     | H6L7             | H6H                                                   | H6                | H6H7             |
| to bolt                     |                              | With long spacer     | H7S     | H7L                      | H7L6                     | H7L7             | H7H                                                   | H7H6              | H7               |

#### Stroke adjustment unit mounting diagram



\* Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

#### Shock Absorber Specifications

| Туре               |                     | RB<br>0806 | RB<br>1007 | RB<br>1412 | RB<br>2015 | RB<br>2725 |  |  |  |
|--------------------|---------------------|------------|------------|------------|------------|------------|--|--|--|
| Max. energy        | absorption (J)      | 0.84       | 2.4        | 10.1       | 29.8       | 46.6       |  |  |  |
| Stroke abso        | orption (mm)        | 6          | 7          | 12         | 15         | 25         |  |  |  |
| Max. collision     | n speed (mm/s)      | 1000       |            |            |            |            |  |  |  |
| Max. operating fre | equency (cycle/min) | 80         | 70         | 45         | 25         | 10         |  |  |  |
| Spring             | Extended            | 1.96       | 4.22       | 6.86       | 8.34       | 8.83       |  |  |  |
| force (N)          | Compressed          | 4.22       | 6.86       | 15.98      | 20.50      | 20.01      |  |  |  |
| Operating temp     | erature range (°C)  | 5 to 60    |            |            |            |            |  |  |  |

Note) The shock absorber service life is different from that of the MY3A/3B cylinders depending on operating conditions. Allowable operating cycle under the specifications set in this catalog is shown below.

### 1.2 million times RB08 2 million times RB10 to RB2725

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

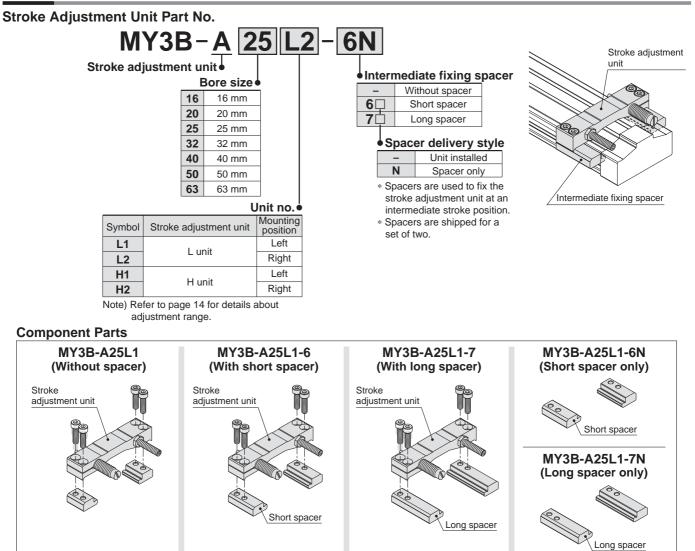


## Mechanically Jointed Rodless Cylinders Series MY3A/3B

#### **Theoretical Output**

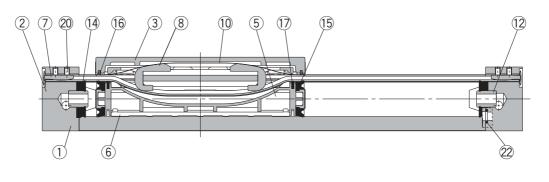
|              |             |        |     |           |          |         |      | Unit: N |
|--------------|-------------|--------|-----|-----------|----------|---------|------|---------|
| Bore<br>size | Piston      |        | C   | Operating | g pressu | re (MPa | a)   |         |
| (mm)         | area<br>(mm | 2) 0.2 | 0.3 | 0.4       | 0.5      | 0.6     | 0.7  | 0.8     |
| 16           | 200         | 40     | 60  | 80        | 100      | 120     | 140  | 160     |
| 20           | 314         | 62     | 94  | 125       | 157      | 188     | 219  | 251     |
| 25           | 490         | 98     | 147 | 196       | 245      | 294     | 343  | 392     |
| 32           | 804         | 161    | 241 | 322       | 402      | 483     | 563  | 643     |
| 40           | 1256        | 251    | 377 | 502       | 628      | 754     | 879  | 1005    |
| 50           | 1962        | 392    | 588 | 784       | 981      | 1177    | 1373 | 1569    |
| 63           | 3115        | 623    | 934 | 1246      | 1557     | 1869    | 2180 | 2492    |

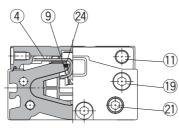
Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm<sup>2</sup>)

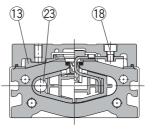

#### Weight

|       |                   |                 |                                             |                                 |                                                 | Unit: kg |
|-------|-------------------|-----------------|---------------------------------------------|---------------------------------|-------------------------------------------------|----------|
| Model | Bore size<br>(mm) | Basic<br>weight | Additional<br>weight per<br>50 mm<br>stroke | Weight<br>of<br>moving<br>parts | Stroke ac<br>unit w<br>(per<br>L unit<br>weight | /eight   |
|       | 16                | 0.21            | 0.06                                        | 0.06                            | /                                               | /        |
|       | 20                | 0.39            | 0.09                                        | 0.12                            |                                                 |          |
|       | 25                | 0.62            | 0.11                                        | 0.20                            |                                                 |          |
| МҮЗА  | 32                | 1.25            | 0.18                                        | 0.37                            |                                                 |          |
|       | 40                | 2.31            | 0.25                                        | 0.67                            |                                                 |          |
|       | 50                | 3.72            | 0.40                                        | 1.07                            |                                                 |          |
|       | 63                | 6.46            | 0.56                                        | 2.16                            | /                                               |          |
|       | 16                | 0.22            | 0.06                                        | 0.06                            | 0.04                                            | 0.05     |
|       | 20                | 0.49            | 0.09                                        | 0.12                            | 0.06                                            | 0.08     |
|       | 25                | 0.71            | 0.11                                        | 0.20                            | 0.10                                            | 0.15     |
| MY3B  | 32                | 1.39            | 0.18                                        | 0.37                            | 0.14                                            | 0.22     |
|       | 40                | 2.41            | 0.25                                        | 0.67                            | 0.26                                            | 0.30     |
|       | 50                | 4.10            | 0.40                                        | 1.08                            | 0.38                                            | 0.52     |
|       | 63                | 7.04            | 0.56                                        | 2.16                            | 0.57                                            | 0.92     |

Calculation method/Example: MY3B25-300L


Basic weight ..... 0.71 kg Additional weight ..... 0.11/50 st L unit weight ..... 0.1 kg


#### Option




## Construction: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

#### MY3A







#### **Component Parts**

| No. | Description    | Material                   | Note                      |
|-----|----------------|----------------------------|---------------------------|
| 1   | Cylinder tube  | Aluminum alloy             | Hard anodized             |
| 2   | Head cover     | Aluminum alloy             | Hard anodized             |
| 3   | Slide table    | Aluminum alloy             | Electroless nickel plated |
| 4   | Piston yoke    | Stainless steel            |                           |
| 5   | Piston         | Polyamide                  |                           |
| 6   | Wear ring      | Polyacetal                 |                           |
| 7   | Belt clamp     | Polybutylene terephthalate |                           |
| 8   | Belt separator | Polyacetal                 |                           |
| 11  | Stopper        | Carbon steel               | Nickel plated             |

| No. | Description                   | Material                | Note      |
|-----|-------------------------------|-------------------------|-----------|
| 12  | Seal ring                     | Aluminum alloy          | Anodized  |
| 13  | Bearing                       | Polyacetal              |           |
| 17  | Inner wiper                   | Special resin           |           |
| 18  | Hexagon socket head cap screw | Chrome molybdenum steel | Chromated |
| 19  | Hexagon socket head cap screw | Chrome molybdenum steel | Chromated |
| 20  | Hexagon socket head set screw | Chrome molybdenum steel | Chromated |
| 21  | Hexagon socket head plug      | Carbon steel            | Chromated |
| 23  | Magnet                        | _                       |           |
| 24  | Seal magnet                   | Rubber magnet           |           |

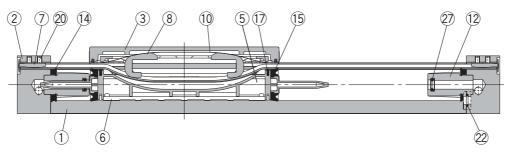
#### **Replacement Parts/Seal**

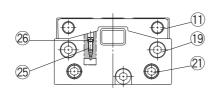
| No. | Description    | Material              | Qty. | MY3A16                | MY3A20                | MY3A25                | MY3A32                | MY3A40                | MY3A50                | MY3A63                |
|-----|----------------|-----------------------|------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 9   | Seal belt      | Urethane<br>Polyamide | 1    | MY3A16-16C-<br>Stroke | MY3A20-16C-<br>Stroke | MY3A25-16C-<br>Stroke | MY3A32-16C-<br>Stroke | MY3A40-16C-<br>Stroke | MY3A50-16C-<br>Stroke | MY3A63-16A-<br>Stroke |
| 10  | Dust seal band | Stainless<br>steel    | 1    | MY3A16-16B-<br>Stroke | MY3A20-16B-<br>Stroke | MY3A25-16B-<br>Stroke | MY3A32-16B-<br>Stroke | MY3A40-16B-<br>Stroke | MY3A50-16B-<br>Stroke | MY3A63-16B-<br>Stroke |
| 16  | Scraper        | Polyamide             | 1    | MYA16-15-<br>R6656    | MYA20-15-<br>AC594    | MYA25-15-<br>R6657    | MYA32-15-<br>AC595    | MYA40-15-<br>R6658    | MYA50-15-<br>AC596    | MYA63-15-<br>R6659    |
| 14  | Gasket bumper  | NBR                   | 2    |                       |                       |                       |                       |                       |                       |                       |
| 15  | Piston seal    | NBR                   | 2    | MY3A16-PS             | MY3A20-PS             | MY3A25-PS             | MY3A32-PS             | MY3A40-PS             | MY3A50-PS             | MY3A63-PS             |
| 22  | O-ring         | NBR                   | 4    |                       |                       |                       |                       |                       |                       |                       |

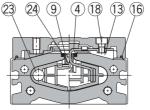
 $\ast$  Seal kit includes (1), (15 and 22. Order the seal kit based on each bore size.

\* Seal kit includes a grease pack (10 g).

 $\ast$  When (9) and (10) are shipped as single units, a grease pack is included (10 g per 1000 strokes).


\* Order with the following part number when only the grease pack is needed.


\* Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)


\* For instructions on how to replace replacement parts/seals, refer to the operation manual.



## Construction: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63







#### **Component Parts**

| No. | Description    | Material                   | Note                      |
|-----|----------------|----------------------------|---------------------------|
| 1   | Cylinder tube  | Aluminum alloy             | Hard anodised             |
| 2   | Head cover     | Aluminum alloy             | Hard anodised             |
| 3   | Slide table    | Aluminum alloy             | Electroless nickel plated |
| 4   | Piston yoke    | Stainless steel            |                           |
| 5   | Piston         | Polyamide                  |                           |
| 6   | Wear ring      | Polyacetal                 |                           |
| 7   | Belt clamp     | Polybutylene terephthalate |                           |
| 8   | Belt separator | Polyacetal                 |                           |
| 11  | Stopper        | Carbon steel               | Nickel plated             |

| No. | Description                   | Material                | Note          |
|-----|-------------------------------|-------------------------|---------------|
| 12  | Cushion boss                  | Aluminum alloy          | Chromated     |
| 13  | Bearing                       | Polyacetal              |               |
| 17  | Inner wiper                   | Special resin           |               |
| 18  | Hexagon socket head cap screw | Chrome molybdenum steel | Chromated     |
| 19  | Hexagon socket head cap screw | Chrome molybdenum steel | Chromated     |
| 20  | Hexagon socket head set screw | Chrome molybdenum steel | Chromated     |
| 21  | Hexagon socket head plug      | Carbon steel            | Chromated     |
| 23  | Magnet                        | —                       |               |
| 24  | Seal magnet                   | Rubber magnet           |               |
| 25  | Cushion needle                | Rolled steel            | Nickel plated |

#### **Replacement Parts/Seal**

| No. | Description    | Material              | Qty. | MY3B16                | MY3B20                | MY3B25                | MY3B32                | MY3B40                 | MY3B50                 | MY3B63                |
|-----|----------------|-----------------------|------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|------------------------|-----------------------|
| 9   | Seal belt      | Urethane<br>Polyamide | 1    | MY3B16-16C-<br>Stroke | MY3B20-16C-<br>Stroke | MY3B25-16C-<br>Stroke | MY3B32-16C-<br>Stroke | MY3B40-16C-<br>Stroke  | MY3B50-16C-<br>Stroke  | MY3B63-16A-<br>Stroke |
| 10  | Dust seal band | Stainless<br>steel    | 1    | MY3B16-16B-<br>Stroke | MY3B20-16B-<br>Stroke | MY3B25-16B-<br>Stroke | MY3B32-16B-<br>Stroke | MY3B40-16B-<br>Stroke  | MY3B50-16B-<br>Stroke  | MY3B63-16B-<br>Stroke |
| 16  | Scraper        | Polyamide             | 1    | MYA16-15-<br>R6656    | MYA20-15-<br>AC594    | MYA25-15-<br>R6657    | MYA32-15-<br>AC595    | MYA40-15-<br>R6658     | MYA50-15-<br>AC596     | MYA63-15-<br>R6659    |
| 26  | O-ring         | NBR                   | 2    | KA00309               | KA00309               | KA00309               | KA00309               | KA00320                | KA00320                | KA00402               |
| 20  | O-mig          | NDI                   | 2    | (ø4 x ø1.8 x ø1.1)    | (ø7.15 x ø3.75 x ø1.7) | (ø7.15 x ø3.75 x ø1.7) | (ø8.3 x ø4.5 x ø1.9)  |
| 14  | Tube gasket    | NBR                   | 2    |                       |                       |                       |                       |                        |                        |                       |
| 15  | Piston seal    | NBR                   | 2    | MY3B16-PS             | MY3B20-PS             | MY3B25-PS             | MY3B32-PS             | MY3B40-PS              | MY3B50-PS              | MY3B63-PS             |
| 22  | O-ring         | NBR                   | 4    |                       | WIT3620-F3            | WIT3625-F3            | WIT3D32-F3            | WIT3040-F3             | WIT3550-F3             | MT3D03-F3             |
| 27  | Cushion seal   | NBR                   | 2    |                       |                       |                       |                       |                        |                        |                       |

\* Seal kit includes <sup>(1</sup>/<sub>9</sub>, <sup>(1</sup>/<sub>9</sub>), <sup>(2</sup>/<sub>9</sub> and <sup>(2</sup>/<sub>9</sub>). Order the seal kit based on each bore size. \* Seal kit includes a grease pack (10 g).

 $\ast$  When (9) and (10 g per 1000 strokes).

\* Order with the following part number when only the grease pack is needed.

\* Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

\* For instructions on how to replace replacement parts/seals, refer to the operation manual.



# Short Type: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

#### MY3A Bore size - Stroke

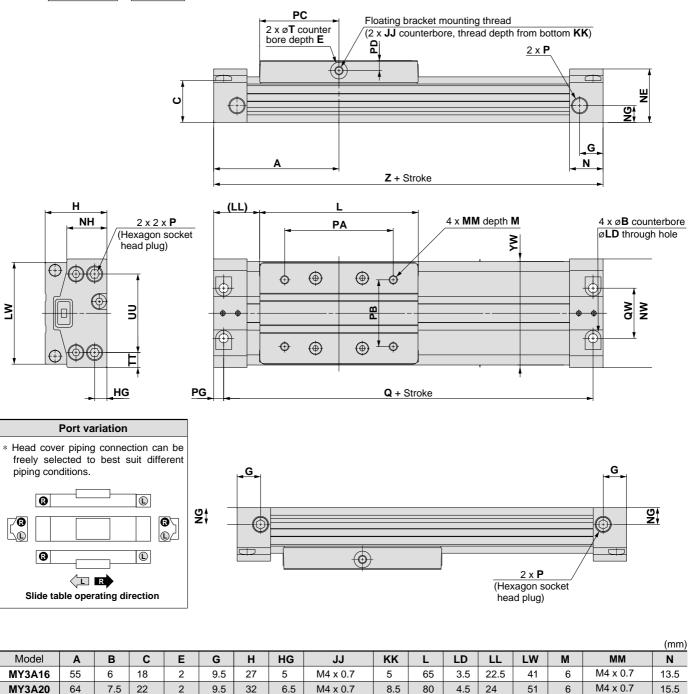
\* Refer to "Specific Product Precautions" on front matter 7 for mounting.

M5 x 0.8

M5 x 0.8

M6 x 1

M6 x 1


UU

M8 x 1.25

YW

Ζ

22.5



**MY3A25** 

**MY3A32** 

**MY3A40** 

**MY3A50** 

MY3A63

Model

**MY3A16** 

**MY3A20** 

**MY3A25** 

**MY3A32** 

**MY3A40** 

**MY3A50** 

MY3A63

NE

22.5

27.5

96.5

9.5

NG

NH

17.2

20.8

47.5

32.5

NW

20.5

Р

M5 x 0.8

M5 x 0.8

Rc, NPT, G1/8

Rc, NPT, G1/8

Rc, NPT, G1/4

Rc, NPT, G3/8

Rc, NPT, G3/8

7.4

16.5

PA

M5 x 0.8

M5 x 0.8

M6 x 1

M6 x 1

PΒ

M8 x 1.25

PC

32.5

47.5

7.5

7.5

15.5

PD

7.5

8.5

PG

8.5

8.5

4.5

5.5

6.6

8.6

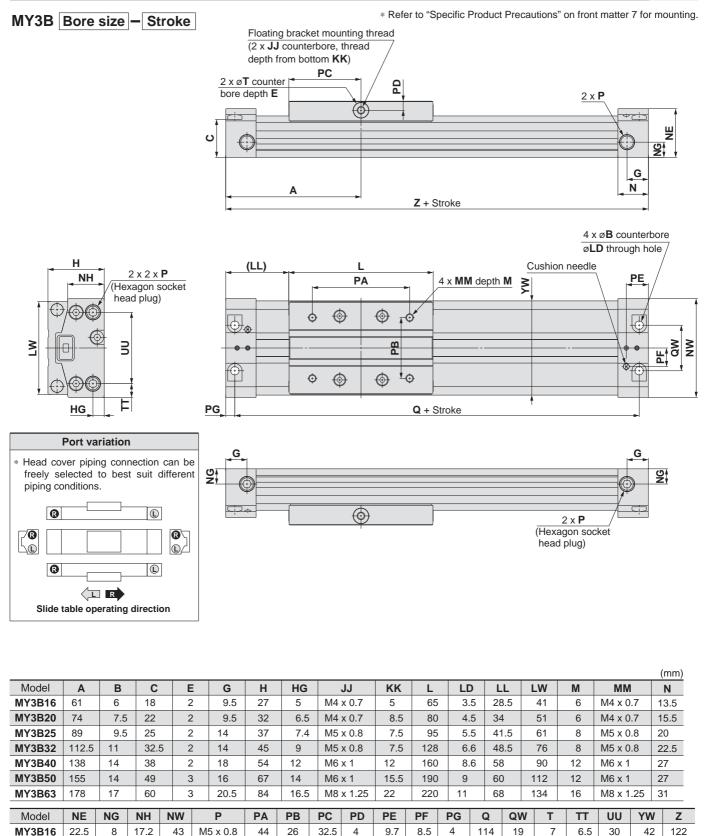
Q

27.5

32.5

QW

т


ТΤ

6.5

13.5



## Standard Type: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63



7.5

8.5

16.5

27.5

12.2

11.2

14.5

19.5

20.5

23.5

4.5

8.5

8.5

13.5

20.8

47.5

MY3B20

**MY3B25** 

MY3B32

MY3B40

MY3B50

MY3B63

27.5

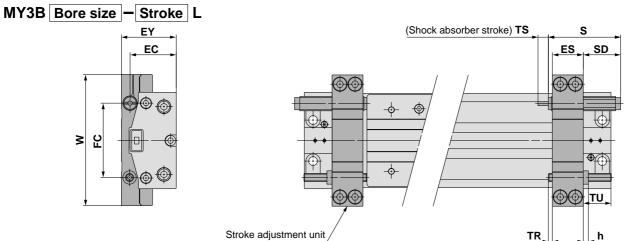
M5 x 0.8

Rc. NPT. G1/8

Rc, NPT, G1/8

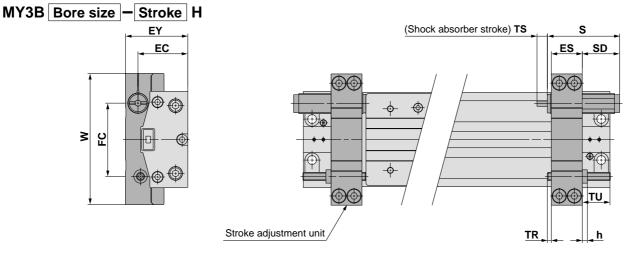
Rc, NPT, G1/4

Rc, NPT, G3/8


139 Rc, NPT, G3/8

47.5

# Standard Type: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

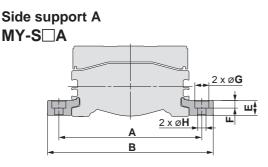

#### Stroke adjustment unit

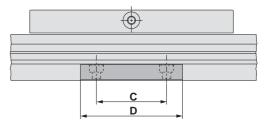
Low load shock absorber + Adjustment bolt



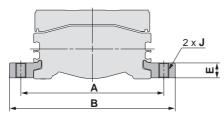
|                     |      |      |      |      |     |      |      |    |     |      |     | (mm)                 |
|---------------------|------|------|------|------|-----|------|------|----|-----|------|-----|----------------------|
| Applicable cylinder | ES   | EC   | EY   | FC   | h   | S    | SD   | TS | TR  | TU   | W   | Shock absorber model |
| MY3B16              | 14.1 | 21.5 | 26.5 | 34.5 | 2.4 | 40.8 | 25.8 | 6  | 0.9 | 25   | 62  | RB0806               |
| MY3B20              | 14.1 | 26.5 | 31.5 | 41   | 2.4 | 40.8 | 22.3 | 6  | 4.4 | 21.5 | 72  | RB0806               |
| MY3B25              | 20.1 | 29.8 | 36.5 | 51.5 | 3.6 | 46.7 | 25.2 | 7  | 1.4 | 28.5 | 90  | RB1007               |
| MY3B32              | 20.1 | 37.5 | 44.5 | 60   | 3.6 | 46.7 | 20.7 | 7  | 5.9 | 24   | 105 | RB1007               |
| MY3B40              | 30.1 | 45   | 53.5 | 72.5 | 5   | 67.3 | 36.3 | 12 | 0.9 | 39   | 128 | RB1412               |
| MY3B50              | 30.1 | 56.5 | 66.5 | 88   | 5   | 67.3 | 34.3 | 12 | 2.9 | 37   | 150 | RB1412               |
| MY3B63              | 36.1 | 70.5 | 83.5 | 108  | 6   | 73.2 | 36.2 | 15 | 0.9 | 43   | 178 | RB2015               |

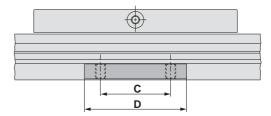
Note) When the stroke adjustment unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited. Refer to front matter 6 for details.





|                     |      |      |      |      |     |      |      |    |     |      |     | (mm)                 |
|---------------------|------|------|------|------|-----|------|------|----|-----|------|-----|----------------------|
| Applicable cylinder | ES   | EC   | EY   | FC   | h   | S    | SD   | TS | TR  | TU   | w   | Shock absorber model |
| MY3B16              | 14.1 | 23   | 29.5 | 34.5 | 2.4 | 46.7 | 31.7 | 7  | 0.9 | 25   | 62  | RB1007               |
| MY3B20              | 14.1 | 27.5 | 34   | 41   | 2.4 | 46.7 | 28.2 | 7  | 4.4 | 21.5 | 72  | RB1007               |
| MY3B25              | 20.1 | 31.8 | 41   | 52.2 | 3.6 | 67.3 | 45.8 | 12 | 1.4 | 28.5 | 90  | RB1412               |
| MY3B32              | 20.1 | 39.5 | 49   | 60.5 | 3.6 | 67.3 | 41.3 | 12 | 5.9 | 24   | 105 | RB1412               |
| MY3B40              | 30.1 | 48   | 60.5 | 73.5 | 5   | 73.2 | 42.2 | 15 | 0.9 | 39   | 128 | RB2015               |
| MY3B50              | 30.1 | 58.5 | 71   | 88.5 | 5   | 73.2 | 40.2 | 15 | 2.9 | 37   | 150 | RB2015               |
| MY3B63              | 36.1 | 74.5 | 91   | 108  | 6   | 99   | 62   | 25 | 0.9 | 43   | 178 | RB2725               |

Note) When the stroke adjustment unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited. Refer to front matter 6 for details.


#### Heavy-loaded shock absorber + Adjustment bolt

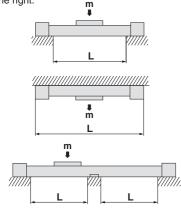

#### Side Support





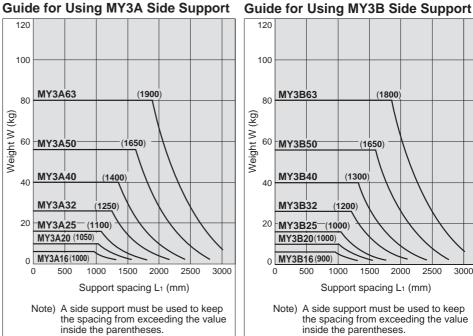
Side support B MY-S






|                                   |                     |     |      |    |    |      |     |     |     | (mm)        |
|-----------------------------------|---------------------|-----|------|----|----|------|-----|-----|-----|-------------|
| Model                             | Applicable cylinder | Α   | В    | С  | D  | E    | F   | G   | Н   | J           |
| MY-S16 <sup>A</sup> B             | MY3A16-MY3B16       | 53  | 63.6 | 15 | 26 | 4.9  | 3   | 6.5 | 3.4 | M4 x 0.7    |
| MY3-S20 <sup>A</sup> <sub>B</sub> | MY3A20·MY3B20       | 65  | 77.6 | 25 | 38 | 5.9  | 3.5 | 8   | 4.5 | M5 x 0.8    |
| MY-S25 B                          | MY3A25-MY3B25       | 77  | 91   | 35 | 50 | 8    | 5   | 9.5 | 5.5 | M6 x 1      |
| MY-S32 A                          | MY3A32·MY3B32       | 97  | 115  | 45 | 64 | 11.7 | 6   | 11  | 6.6 | M8 x 1.25   |
| WIT-332 B                         | MY3A40-MY3B40       | 112 | 130  | 45 | 04 | 11.7 | 0   |     | 0.0 | IVIO X 1.25 |
| MY-S50 🔒 –                        | MY3A50-MY3B50       | 138 | 160  | 55 | 80 | 110  | 05  | 11  | 0   | M10 x 1.5   |
| WI - 330 B                        | MY3A63·MY3B63       | 160 | 182  | 55 | 00 | 14.8 | 8.5 | 14  | 9   | 10110 X 1.5 |

Note) A set of side supports consists of a left support and a right support.


#### **Guide for Using Side Support**

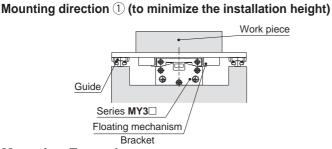
For long stroke operations, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.



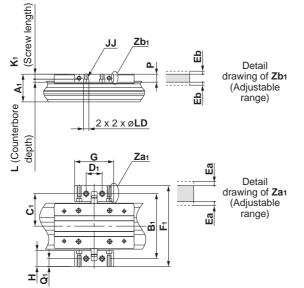
### ∠\Caution

- $\stackrel{-}{(1)}$  If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, the use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2 Support brackets are not for mounting; use them solely for providing support.




120 100 (1800) **MY3B63** 80 60 MY3B50 (1650)**MY3B40** (1300 40 MY3B32 200) 20 MY3B25 (1000) MY3B20(1000) 0 MY3B16 (900) 2000 2500 3000 0 500 1000 1500 Support spacing L1 (mm) Note) A side support must be used to keep the spacing from exceeding the value inside the parentheses.




#### **Floating Bracket**

Facilitates connection to other guide systems.

#### Application



#### **Mounting Example**

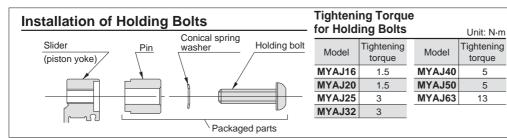


#### MY3 Floating Bracket Mounting Dimensions

#### (mm) Adjustment range Applicable Common Adjustment range Common Applicable Model Model cylinder G Н JJ Ρ LD Ea Eь cylinder G н JJ Ρ LD Ea Eb L L MYAJ16 MY3 16 20 MYAJ40 MY3 40 M8 x 1.25 38 M4 x 0.7 4.5 10 6 1 1 72 32 6.5 16 11 1 1 MYAJ20 MY3 20 50 21 M4 x 0.7 4 10 6.5 MYAJ50 MY3 50 90 36 M8 x 1.25 6.5 16 11 1 1 1 1 MYAJ25 MY3 25 MYAJ63 MY3D63 55 22 M6 x 1 5.5 9.5 1 100 40 M10 x 1.5 19 14 12 1 9 1 1 MYAJ32 MY3 32 60 22 M6 x 1 5.5 12 9.5 1 1

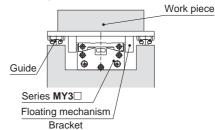
|        | Applicable | Mounting direction ① |            |            |            |            |            |            |  |  |  |
|--------|------------|----------------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Model  | cylinder   | <b>A</b> 1           | <b>B</b> 1 | <b>C</b> 1 | <b>D</b> 1 | <b>F</b> 1 | <b>K</b> 1 | <b>Q</b> 1 |  |  |  |
| MYAJ16 | MY3□16     | 29                   | 68         | 34         | 18         | 88         | 5.5        | 10         |  |  |  |
| MYAJ20 | MY3□20     | 34                   | 81         | 40.5       | 20         | 102        | 6          | 10.5       |  |  |  |
| MYAJ25 | MY3□25     | 38.5                 | 90         | 45         | 24         | 112        | 6.5        | 11         |  |  |  |
| MYAJ32 | MY3□32     | 47                   | 106        | 53         | 30         | 128        | 6.5        | 11         |  |  |  |

|  | Model  | Applicable |            | Mounting direction ① |            |            |            |            |            |  |  |  |
|--|--------|------------|------------|----------------------|------------|------------|------------|------------|------------|--|--|--|
|  |        | cylinder   | <b>A</b> 1 | <b>B</b> 1           | <b>C</b> 1 | <b>D</b> 1 | <b>F</b> 1 | <b>K</b> 1 | <b>Q</b> 1 |  |  |  |
|  | MYAJ40 | MY3□40     | 56         | 130                  | 65         | 32         | 162        | 9.5        | 16         |  |  |  |
|  | MYAJ50 | MY3□50     | 69         | 156                  | 78         | 40         | 192        | 9.5        | 18         |  |  |  |
|  | MYAJ63 | MY3063     | 86         | 186                  | 93         | 50         | 226        | 10         | 20         |  |  |  |
|  |        |            |            |                      |            |            |            |            |            |  |  |  |

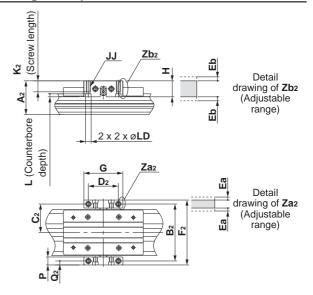

B<sub>2</sub>

114

136


| Model   | Applicable |    |    | Mount | ing direc | tion (2) |    |            | Madal  | Applicable |            |
|---------|------------|----|----|-------|-----------|----------|----|------------|--------|------------|------------|
| Iviodei | cylinder   | A2 | B2 | C2    | D2        | F2       | K2 | <b>Q</b> 2 | Model  | cylinder   | <b>A</b> 2 |
| MYAJ16  | MY3□16     | 36 | 58 | 29    | 30        | 68       | 10 | 5          | MYAJ40 | MY3□40     | 68         |
| MYAJ20  | MY3□20     | 41 | 70 | 35    | 35        | 80       | 10 | 5          | MYAJ50 | MY3□50     | 81         |
| MYAJ25  | MY3□25     | 46 | 80 | 40    | 40        | 92       | 14 | 6          | MYAJ63 | MY3063     | 100        |
| MYAJ32  | MY3□32     | 54 | 96 | 48    | 46        | 108      | 14 | 6          |        |            |            |

Note) Floating brackets are shipped as a set of left and right brackets.




#### Application

Mounting direction (2) (to minimize the installation width)



#### **Mounting Example**



| 166 | 83 | 80 | 185 |  |
|-----|----|----|-----|--|
|     |    |    |     |  |
|     |    |    |     |  |
|     |    |    |     |  |

Mounting direction 2

D2

55

70

F2

130

152

K2

19

20

23

Q2

8

8

9.5

C<sub>2</sub>

57

68



| Description           | Qty. |
|-----------------------|------|
| Bracket               | 2    |
| Pin                   | 2    |
| Conical spring washer | 2    |
| Holding bolts         | 2    |



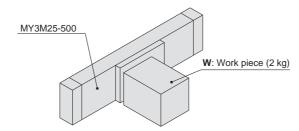
Series MY3M

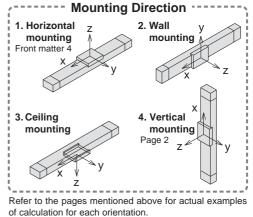
Slide bearing guide type (Air cushion)

ø16, ø25, ø40, ø63

1000

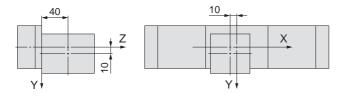
23


## Series MY3M Model Selection


The following are steps for selecting the MY3 series which is best suited to your application.

#### **Calculation of the Guide Load Factor**

#### 1 Operating Conditions

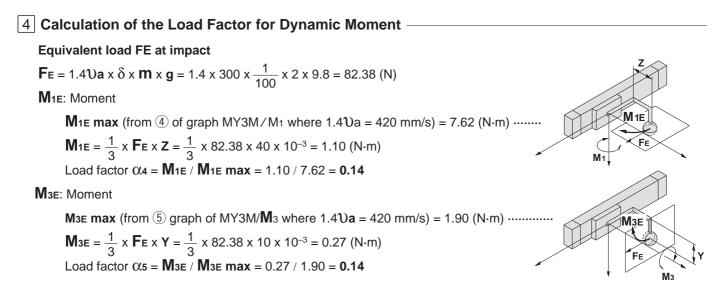

| Cylinder ·····                  | MY3M25-500                      |
|---------------------------------|---------------------------------|
| Average operating speed $\Im a$ | 300 mm/s                        |
| Mounting direction              | Wall mounting                   |
| Cushion ·····                   | Air cushion ( $\delta$ = 1/100) |





\* For ceiling mounting, refer to Best Pneumatics No. 2, page 998.

#### 2 Load Blocking

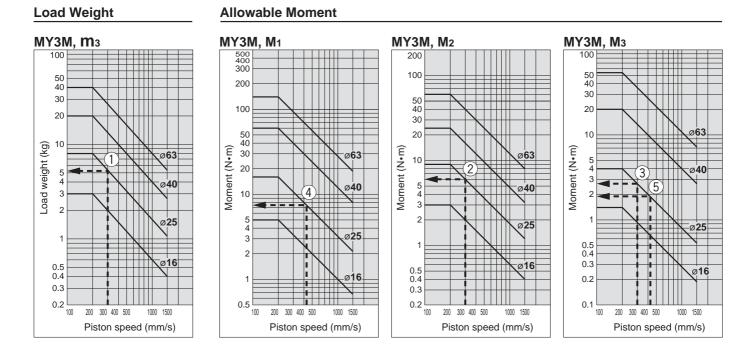



#### Work Piece Weight and Centre of Gravity

|  | Work piece<br>no. | Weight<br>(m) | Centre of gravity |        |        |  |
|--|-------------------|---------------|-------------------|--------|--------|--|
|  |                   |               | X-axis            | Y-axis | Z-axis |  |
|  | W                 | 2 kg          | 10 mm             | 10 mm  | 40 mm  |  |

#### 3 Calculation of the Load Factor for Static Load **M3**: Weight **M**<sup>3</sup> max (from 1) of graph MY3M / m<sub>3</sub>) = 5.33 (kg) ..... Load factor $\alpha_1 = m_3 / m_3 max = 2 / 5.33 = 0.38$ m<sub>3</sub> M2: Moment **M**<sub>2</sub> max (from 2) of graph MY3M / M<sub>2</sub>) = 6 (N·m)..... $M_2 = M_3 \times g \times Z = 2 \times 9.8 \times 40 \times 10^{-3} = 0.78 (N \cdot m)$ m<sub>3</sub> Load factor $\alpha_2 = M_2 / M_2 max = 0.78 / 6 = 0.13$ M<sub>2</sub> M3: Moment **M**<sub>3</sub> max (from ③ of graph MY3M / **M**<sub>3</sub>) = 2.67 (N·m)..... $M_3 = M_3 \times g \times X = 2 \times 9.8 \times 10 \times 10^{-3} = 0.2 (N \cdot m)$ m<sub>3</sub> Load factor $\alpha_3 = M_3 / M_3 max = 0.2 / 2.67 = 0.07$ €М (

#### **Calculation of the Guide Load Factor**




#### 5 Sum and Examination of the Guide Load Factors

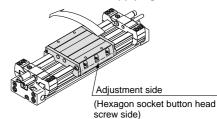
#### $\Sigma \alpha = \Omega \mathbf{1} + \Omega \mathbf{2} + \Omega \mathbf{3} + \Omega \mathbf{4} + \Omega \mathbf{5} = \mathbf{0.871}$

The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

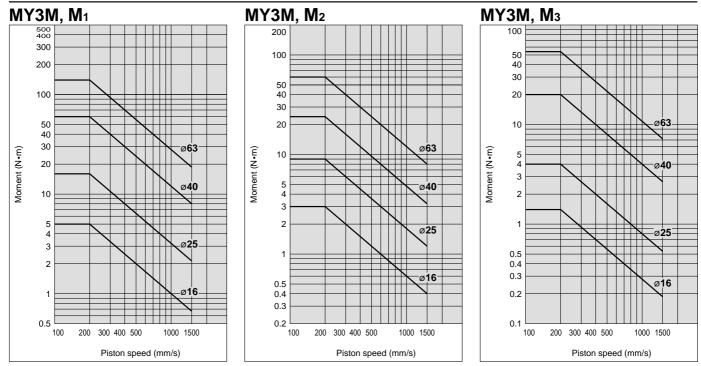
In an actual calculation, when the sum of the guide load factors  $\Sigma \alpha$  in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. This calculation can be easily made using the "SMC Pneumatic CAD System".



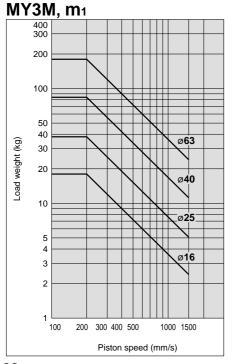
### Series MY3M

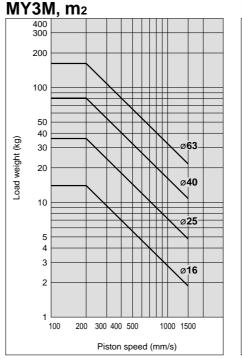

#### Maximum Allowable Moment / Maximum Allowable Load

| Model | Bore size | Maximum allowable moment (N•m) |    |     | Maximum allowable load (kg) |     |    |
|-------|-----------|--------------------------------|----|-----|-----------------------------|-----|----|
|       | (mm)      | <b>M</b> 1                     | M2 | Мз  | <b>m</b> 1                  | m2  | mз |
|       | 16        | 5                              | 3  | 1.4 | 18                          | 14  | 3  |
| МҮЗМ  | 25        | 16                             | 9  | 4   | 38                          | 36  | 8  |
|       | 40        | 60                             | 24 | 20  | 84                          | 81  | 20 |
|       | 63        | 140                            | 60 | 54  | 180                         | 163 | 40 |

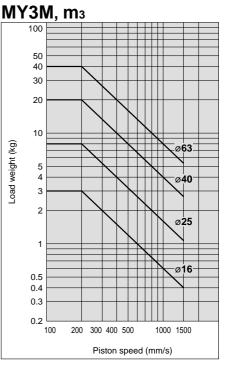

\* We recommend that the static M2 moment direction should be as illustrated.

Also, when using the product in a wall mount application (m<sub>3</sub> applied), we recommend that the mounting orientation of the adjustment side (hexagon socket head button bolt side) should be in the upper position.


Recommended direction of applying M<sub>2</sub> moment

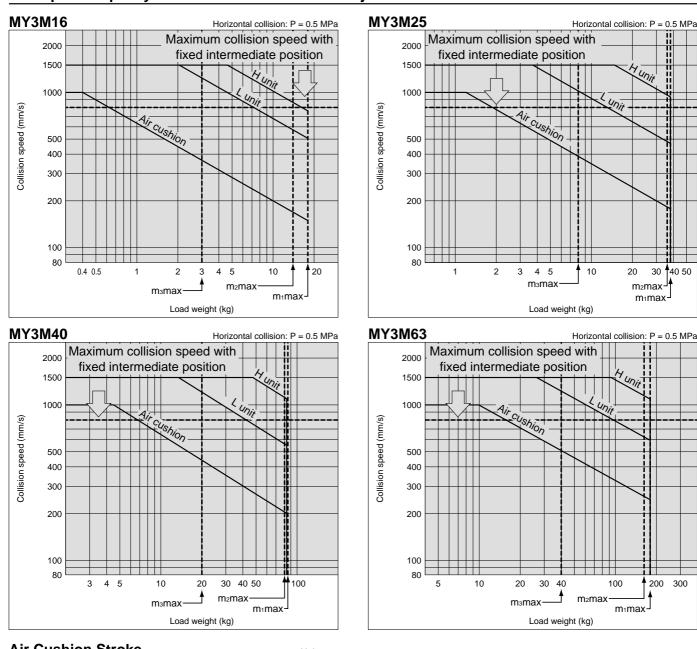



Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes Maximum Allowable Moment be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.




Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be **Maximum Allowable Load** exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.



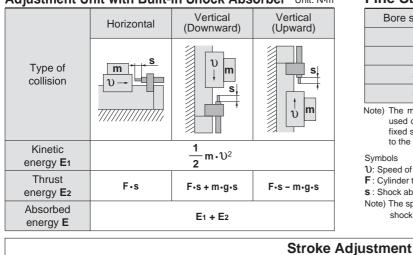



SMC



# Cushion Capacity

### Absorption Capacity of Air Cushion and Stroke Adjustment Unit




| Air Cushion Stroke |                |  |  |  |  |  |  |
|--------------------|----------------|--|--|--|--|--|--|
| Bore size (mm)     | Cushion stroke |  |  |  |  |  |  |
| 16                 | 13             |  |  |  |  |  |  |
| 25                 | 18             |  |  |  |  |  |  |
| 40                 | 25             |  |  |  |  |  |  |
| 63                 | 30             |  |  |  |  |  |  |

# Cushion Capacity

### Absorption Capacity of Air Cushion and Stroke Adjustment Unit

### Calculation of Absorbed Energy for Stroke Adjustment Unit with Built-in Shock Absorber Unit: N-m



### <Stroke adjustment of the adjustment bolt>

Loosen the lock nut for the adjustment bolt, adjust the stroke on the head cover side with a hexagon wrench, and secure with a lock nut.

### <Stroke adjustment of the shock absorber>

Loosen the fixing bolts on the shock absorber side and rotate the shock absorber for stroke adjustment. Tighten the fixing bolts to secure the shock absorber. Use caution not to overtighten the fixing bolts.

(Refer to "Stroke Adjustment Unit Tightening Torque for Fixing Bolts.")

#### Stroke Adjustment Unit living Polts

| rightening rorque for | Unit: N |                   |
|-----------------------|---------|-------------------|
| Bore size (mm)        | Unit    | Tightening torque |
| 16                    | L       | 0.7               |
| 10                    | Н       | 0.7               |

|    | Н | 0.1  |
|----|---|------|
| 25 | L | 25   |
| 25 | Н | 3.5  |
| 40 | L | 10.0 |
| 40 | Н | 13.8 |
| 63 | L | 07 F |
| 03 | Н | 27.5 |

### Shock Absorber

| Tightening Torque for Fixing Bolts |      |                   |  |  |  |  |  |  |  |
|------------------------------------|------|-------------------|--|--|--|--|--|--|--|
| Bore size (mm)                     | Unit | Tightening torque |  |  |  |  |  |  |  |
| 16                                 | L    | 0.6               |  |  |  |  |  |  |  |
| 10                                 | Н    | 0.0               |  |  |  |  |  |  |  |
| 25                                 | L    | 1.5               |  |  |  |  |  |  |  |
| 23                                 | Н    | 1.5               |  |  |  |  |  |  |  |
| 40                                 | L    | 3.0               |  |  |  |  |  |  |  |
| 40                                 | Н    | 3.0               |  |  |  |  |  |  |  |
| 63                                 | L    | FO                |  |  |  |  |  |  |  |
| 03                                 | н    | 5.0               |  |  |  |  |  |  |  |

# 

### 1. Use caution not to have your hands caught in the unit.

When using a cylinder with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit is very narrow. Care should be taken to avoid the danger of hands being caught in this small space. Install a protective cover to prevent the risk of accidents to the human body.

# Stroke Adjustment Unit

### Fine Stroke Adjustment Range

| Bore size (mm) | Fine stroke adjustment range |
|----------------|------------------------------|
| 16             | 0 to -10                     |
| 25             | 0 to -12                     |
| 40             | 0 to -16                     |
| 63             | 0 to -24                     |

Note) The maximum operating speed will differ when the stroke adjustment unit is used outside the maximum fine stroke adjustment range (with reference to the fixed stroke end), such as at a fixed intermediate position (X416, X417). (Refer to the graph on page 27.)

#### Symbols

Unit: N·m

۰m

- U: Speed of impacting object (m/s)
- F: Cylinder thrust (N)
- m: Weight of impacting object (kg) g : Gravitational acceleration (9.8 m/s<sup>2</sup>)

Unit: mm

s : Shock absorber stroke (m)

Note) The speed of the impacting object is measured at the time of collision with the shock absorber.

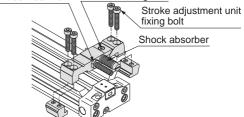
# 

### 2. The stroke adjustment unit may interfere with the mounting bolt when mounting the cylinder on the equipment.

Loosen the unit fixing bolt and dislocate the stroke adjustment unit before mounting the cylinder. After fixing the cylinder, move the stroke adjustment unit back to the desired location and tighten the unit fixing bolt.

Use caution not to overtighten the fixing bolts.

(Refer to "Stroke Adjustment Unit Tightening Torque for Fixing Bolts".)


### 3. When using the adjust bolt to perform stroke adjustment, fix the adjust bolt so that it is on the same side as the shock absorber.

Fix the adjust bolt on the same side as the shock absorber that was used for stroke adjustment. If the shock absorber's stopper side and the front end of the

adjust bolt are not on the same side, the slide table stopping position becomes unstable, and durability may drop.

### 4. Securing the unit body

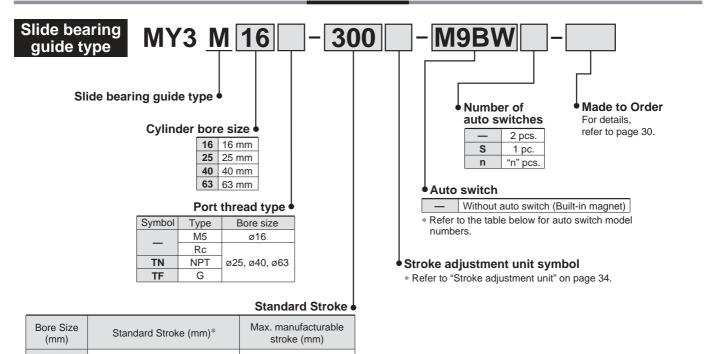
Absorber fixing bolt Adjustment bolt lock nut



Tighten the four unit fixing bolts equally to secure the unit body.

### 5. Do not fix and use the stroke adjustment unit at an intermediate position.

When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In that case, use a short spacer or a long spacer.


For other lengths, please consult with SMC.

(Refer to "Stroke Adjustment Unit Tightening Torque for Fixing Bolts.") If the stroke adjustment unit is fixed at an intermediate position, the energy absorption capacity may be different. For this reason, refer to the maximum absorbed energy listed above, and use the adjustment unit within the allowable absorption capacity.

# Mechanically Jointed Rodless Cylinder Slide bearing guide type Series MY3M

How to Order

ø16, ø25, ø40, ø63



| 40, 63 | 700, 800,900, 1000, 1200<br>1400, 1600, 1800, 2000 | 3000 |
|--------|----------------------------------------------------|------|
|        | anufacturable in 1 mm increments, up to            | ,    |

100, 200, 300, 400, 500, 600

16 25

when the stroke is 49 mm or less, the air cushion capability lowers and multiple auto switches cannot be mounted. Pay special attention to this point.

Also when exceeding a 2000 mm stroke, specify "-XB11" at the end of the model number. For details, refer to the "Made to Order Specifications".

### Applicable Auto Switches/ Refer to Best Pneumatics No. 2, pages 1263 to 1371 for further information on auto switches.

|                    |                                         | Electrical          | light           | 10/1-1                 | L    | oad volta | ge            | Auto swite    | ch model | Lead         | wire l   | ength     | ר (m)    | Des usins d         |            |          |       |      |     |   |            |               |   |            |  |
|--------------------|-----------------------------------------|---------------------|-----------------|------------------------|------|-----------|---------------|---------------|----------|--------------|----------|-----------|----------|---------------------|------------|----------|-------|------|-----|---|------------|---------------|---|------------|--|
| Type               | Special function                        | Electrical<br>entry | Indicator light | Wiring<br>(Output)     | C    | C         | AC            | Perpendicular | In-line  | 0.5<br>(—)   | 1<br>(M) | 3<br>(L)  | 5<br>(Z) | Pre-wired connector | Applical   | ole load |       |      |     |   |            |               |   |            |  |
|                    |                                         |                     |                 | 3-wire (NPN)           |      | 5 V, 12 V |               | M9NV          | M9N      |              |          |           | 0        | 0                   | IC circuit |          |       |      |     |   |            |               |   |            |  |
|                    |                                         |                     |                 | 3-wire (PNP)           |      | 5 V, 12 V |               | M9PV          | M9P      |              |          |           | 0        | 0                   | IC CIICUII |          |       |      |     |   |            |               |   |            |  |
|                    |                                         | Grommet             | Yes             | 2-wire                 |      | 12 V      |               | M9BV          | M9B      |              |          |           | 0        | 0                   | —          |          |       |      |     |   |            |               |   |            |  |
| state<br>tch       | Diagnostic indication                   | Oronninet           | 162             | 3-wire (NPN)           |      |           |               |               |          |              |          |           |          |                     | 5 V, 12 V  |          | M9NWV | M9NW |     |   |            | 0             | 0 | IC circuit |  |
| olid sta<br>switch | (2-colour indication)                   |                     |                 |                        |      |           |               |               |          | 3-wire (PNP) | 24 V     | 5 0, 12 0 | _        | M9PWV               | M9PW       |          |       |      | 0   | 0 | IC CIICUII | Relay,<br>PLC |   |            |  |
| Solid<br>swi       |                                         |                     |                 | 2-wire                 |      | -         |               |               | 12 V     |              | M9BWV    | M9BW      |          |                     |            | 0        | 0     | _    | PLC |   |            |               |   |            |  |
| S                  |                                         |                     |                 | 3-wire (NPN)           |      |           |               | 5 V, 12 V     |          | M9NAV*1      | M9NA*1   | 0         | 0        |                     | 0          | 0        |       |      |     |   |            |               |   |            |  |
|                    | Water resistant<br>(2-color indication) |                     |                 | 3-wire (PNP)           |      | 5 V, 12 V |               | M9PAV*1       | M9PA*1   | 0            | 0        |           | 0        | 0                   | IC circuit |          |       |      |     |   |            |               |   |            |  |
|                    |                                         |                     |                 | 2-wire                 |      | 12 V      |               | M9BAV*1       | M9BA*1   | 0            | 0        |           | 0        | 0                   | —          |          |       |      |     |   |            |               |   |            |  |
| Reed<br>switch     |                                         | Grommet             | Yes             | 3-wire<br>(NPN equiv.) | —    | 5 V       | _             | A96V          | A96      | •            | -        | •         | -        | _                   | IC circuit | _        |       |      |     |   |            |               |   |            |  |
| Re                 |                                         |                     |                 | 2-wire                 | 24 V | 12 V      | 100 V         | A93V*2        | A93      |              | —        |           | —        | —                   | —          | Relay,   |       |      |     |   |            |               |   |            |  |
|                    |                                         |                     | No              | ∠-wire                 | 24 V | 12 V      | 100 V or less | A90V          | A90      |              | -        |           | —        | _                   | IC circuit | PLC      |       |      |     |   |            |               |   |            |  |

\*1) Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

Consult with SMC regarding water resistant types with the above model numbers.

\*2) 1 m type lead wire is only applicable to D-A93.

- \* Lead wire length symbols: 0.5 m ...... -
  - 1 m ······ M (Example) M9NWM

\* Solid state auto switches marked with "○" are produced upon receipt of order.
\* Separate switch spacers (BMY3-016) are required for retrofitting of auto switches.

3 m ······· L (Example) M9NWL

5 m ······· Z (Example) M9NWZ

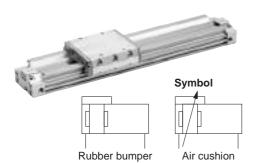
\* There are other applicable auto switches than listed above. For details, refer to page 36.

\* Refer to pages 1626 to 1627 for the details of auto switches with a pre-wired connector.

\* Auto switches are shipped together (not assembled). (Refer to page 36 for the details of auto switch mounting.)

(Example) M9NW




tade to

Symbol -X168

-XB11

-XB22

Made to Order Symbol



# **Specifications**

| Bore size (mm)                | 16                                                         | 25            | 40    | 63 |  |  |  |  |  |
|-------------------------------|------------------------------------------------------------|---------------|-------|----|--|--|--|--|--|
| Fluid                         | Air                                                        |               |       |    |  |  |  |  |  |
| Action                        |                                                            | Double acting |       |    |  |  |  |  |  |
| Operating pressure range      | 0.2 to 0.8 MPa 0.15 to 0.7 MPa                             |               |       |    |  |  |  |  |  |
| Proof pressure                | 1.05 MPa                                                   |               |       |    |  |  |  |  |  |
| Ambient and fluid temperature | 5 to 60°C                                                  |               |       |    |  |  |  |  |  |
| Cushion                       |                                                            | Air cu        | shion |    |  |  |  |  |  |
| Lubrication                   | Not required (Non-lube)                                    |               |       |    |  |  |  |  |  |
| Stroke length tolerance       | 1000 mm or less $^{+1.8}_{0}$ , From 1001 mm $^{+2.8}_{0}$ |               |       |    |  |  |  |  |  |
| Port size (Rc, NPT, G)        | M5 x 0.8 1/8 1/4 3/8                                       |               |       |    |  |  |  |  |  |

### **Piston Speed**

| Bore size (mm)                        | 16              | 25 | 40 | 63 |  |  |
|---------------------------------------|-----------------|----|----|----|--|--|
| Without stroke adjustment unit        | 80 to 1000 mm/s |    |    |    |  |  |
| Stroke adjustment unit (L and H unit) | 80 to 1500 mm/s |    |    |    |  |  |
| External shock absorber               | 80 to 1500 mm/s |    |    |    |  |  |

\* When the RB series is used, operate at a piston speed that will not exceed the absorption capacity of the air cushion and stroke adjustment unit.

\* Because of its structure, the fluctuation of this cylinder's operating speed is greater than rod type cylinders. For applications that require constant speed, select an applicable equipment for the level of demand

## **Stroke Adjustment Unit Specifications**

Made to Order: Individual Specifications

Specifications

(For details, refer to page 40) Specifications

Helical insert thread

Long stroke type

Series RJ type

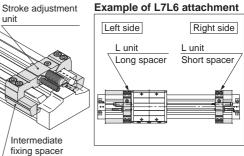
Shock absorber soft type

| Bore size (mm)                               |                   | 16         |         | 25         |         | 4          | 0      | 63         |        |
|----------------------------------------------|-------------------|------------|---------|------------|---------|------------|--------|------------|--------|
| Unit symbol                                  |                   | L          | Н       | L          | Н       | L          | Н      | L          | Н      |
| Shock absorber model                         |                   | RB0806     | RB1007  | RB1007     | RB1412  | RB1412     | RB2015 | RB2015     | RB2725 |
| Shock absorber soft ty Series RJ (-XB22) mod |                   | RJ0806H    | RJ1007H | RJ1007H    | RJ1412H | RJ1412H    | —      | _          | —      |
| Stroke adjustment                            | Without spacer    | 0 to -10   |         | 0 to -12   |         | 0 to -16   |        | 0 to -24   |        |
| range by intermediate                        | With short spacer | -10 to -20 |         | -12 t      | o -24   | -16 to -32 |        | -24 to -48 |        |
| fixing spacer (mm)                           | With long spacer  | -20 t      | o -30   | -24 to -36 |         | -32 to -48 |        | -48 to -72 |        |

\* Stroke adjustment range is applicable for one side when mounted on a cylinder.

# Stroke Adjustment Unit Symbol

|                                     | _               |                       |         | Right side stroke adjustment unit |                          |            |                                                       |                  |      |  |  |  |
|-------------------------------------|-----------------|-----------------------|---------|-----------------------------------|--------------------------|------------|-------------------------------------------------------|------------------|------|--|--|--|
|                                     |                 |                       | Without | L: With lov<br>+ Adjustm          | v load shocł<br>ent bolt | k absorber | H: With high load shock absorber<br>+ Adjustment bolt |                  |      |  |  |  |
|                                     |                 | unit                  |         | With short spacer                 | With long spacer         |            | With short spacer                                     | With long spacer |      |  |  |  |
|                                     | Without unit    |                       | Nil     | SL                                | SL6                      | SL7        | SH                                                    | SH6              | SH7  |  |  |  |
| nit<br>bke                          | L: With low le  | oad shock absorber +  | LS      | L                                 | LL6                      | LL7        | LH                                                    | LH6              | LH7  |  |  |  |
| stro<br>nt u                        | Adjustment      | With short spacer     | L6S     | L6L                               | L6                       | L6L7       | L6H                                                   | L6H6             | L6H7 |  |  |  |
| de                                  | bolt            | With long spacer      | L7S     | L7L                               | L7L6                     | L7         | L7H                                                   | L7H6             | L7H7 |  |  |  |
| Left side stroke<br>adjustment unit | H: With high    | load shock absorber + | HS      | HL                                | HL6                      | HL7        | Н                                                     | HH6              | HH7  |  |  |  |
| Lefadj                              | Adjustment bolt | With short spacer     | H6S     | H6L                               | H6L6                     | H6L7       | H6H                                                   | H6               | H6H7 |  |  |  |
|                                     | DOIL            | With long spacer      | H7S     | H7L                               | H7L6                     | H7L7       | H7H                                                   | H7H6             | H7   |  |  |  |


\* Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

# Shock Absorber Specifications

| Туре              |                     | RB<br>0806 | RB<br>1007 | RB<br>1412 | RB<br>2015 | RB<br>2725 |
|-------------------|---------------------|------------|------------|------------|------------|------------|
| Max. energy       | absorption (J)      | 2.9        | 5.9        | 19.6       | 58.8       | 147        |
| Stroke abs        | orption (mm)        | 6          | 7          | 12         | 15         | 25         |
| Max. collisio     | n speed (mm/s)      |            |            | 1500       |            |            |
| Max. operating fr | equency (cycle/min) | 80         | 70         | 45         | 25         | 10         |
| Spring            | Extended            | 1.96       | 4.22       | 6.86       | 8.34       | 8.83       |
| force (N)         | Compressed          | 4.22       | 6.86       | 15.98      | 20.50      | 20.01      |
| Operating temp    | perature range (°C) |            |            | 5 to 60    |            |            |

### Stroke adjustment unit mounting diagram





Note) The shock absorber service life is different from that of the MY3M cylinders depending on operating conditions. Allowable operating cycle under the specifications set in this catalog is shown below.

#### 1.2 million times RB08 2 million times RB10 to RB2725

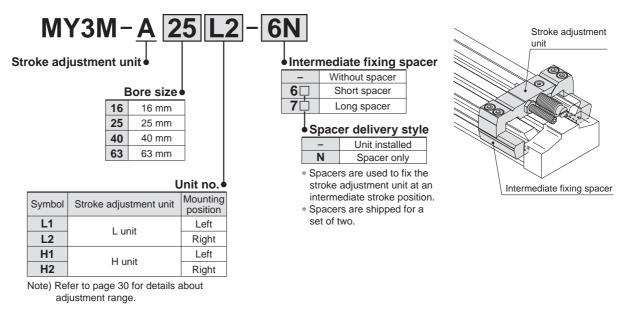
Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.



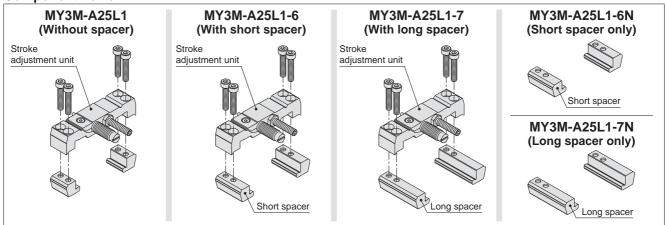
# Mechanically Jointed Rodless Cylinders Series MY3M

### **Theoretical Output**

|              |                    |     |     |      |      |      |      | Unit: N |
|--------------|--------------------|-----|-----|------|------|------|------|---------|
| Bore<br>size | Piston<br>area     |     | (   | ı)   |      |      |      |         |
| (mm)         | (mm <sup>2</sup> ) | 0.2 | 0.3 | 0.4  | 0.5  | 0.6  | 0.7  | 0.8     |
| 16           | 200                | 40  | 60  | 80   | 100  | 120  | 140  | 160     |
| 25           | 490                | 98  | 147 | 196  | 245  | 294  | 343  | 392     |
| 40           | 1256               | 251 | 377 | 502  | 628  | 754  | 879  | 1005    |
| 63           | 3115               | 623 | 934 | 1246 | 1557 | 1869 | 2180 | 2492    |

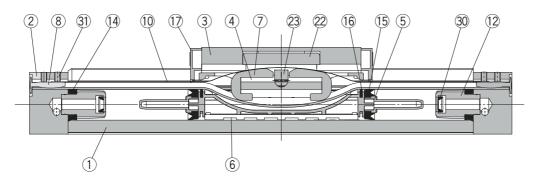

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm<sup>2</sup>)

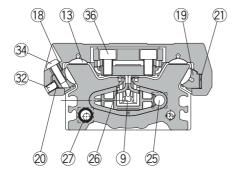
### Weight

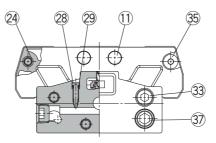

|                                         |           |        |                      |                 |                  | Unit: kg                   |  |  |  |
|-----------------------------------------|-----------|--------|----------------------|-----------------|------------------|----------------------------|--|--|--|
| Model                                   | Bore size | Basic  | Additional<br>weight | Weight<br>of    |                  | djustment<br>it (per unit) |  |  |  |
| woder                                   | (mm)      | weight | per 50 mm<br>stroke  | moving<br>parts | L unit<br>weight | H unit<br>weight           |  |  |  |
|                                         | 16        | 0.29   | 0.08                 | 0.13            | 0.05             | 0.06                       |  |  |  |
| МҮЗМ                                    | 25        | 0.90   | 0.21                 | 0.35            | 0.12             | 0.17                       |  |  |  |
| IVI T SIVI                              | 40        | 3.03   | 0.31                 | 1.14            | 0.34             | 0.43                       |  |  |  |
|                                         | 63        | 8.63   | 0.68                 | 2.96            | 0.69             | 0.91                       |  |  |  |
| Calculation method/Example: MY3M25-400H |           |        |                      |                 |                  |                            |  |  |  |

### Option

Stroke Adjustment Unit Part No.





### **Component Parts**




### Construction

### MY3M







### **Component Parts**

| No. | Description    | Material                   | Note          |
|-----|----------------|----------------------------|---------------|
| 1   | Cylinder tube  | Aluminum alloy             | Hard anodised |
| 2   | Head cover     | Aluminum alloy             | Hard anodised |
| 3   | Slide table    | Aluminum alloy             | Hard anodised |
| 4   | Piston yoke    | Stainless steel            |               |
| 5   | Piston         | Polyamide                  |               |
| 6   | Wear ring      | Polyacetal                 |               |
| 7   | Belt separator | Polyacetal                 |               |
| 8   | Belt clamp     | Polybutylene terephthalate |               |
| 11  | Stopper        | Carbon steel               | Nickel plated |
| 12  | Cushion boss   | Aluminum alloy             | Chromated     |
| 13  | Bearing        | Polyacetal                 |               |
| 16  | Inner wiper    | Special resin              |               |
| 17  | End cover      | Polyamide                  |               |
| 18  | Adjust arm A   | Aluminum alloy             | Chromated     |
| 19  | Adjust arm B   | Aluminum alloy             | Chromated     |

| No. | Description                      | Material                | Note                      |
|-----|----------------------------------|-------------------------|---------------------------|
| 20  | Backup spring                    | Stainless steel         |                           |
| 21  | Bearing adjustment rubber        | NBR                     |                           |
| 22  | Coupler body                     | Aluminum alloy          | Hard anodised             |
| 23  | Coupler pin                      | Carbon steel            | Electroless nickel plated |
| 24  | Spacer                           | Stainless steel         |                           |
| 25  | Magnet                           | -                       |                           |
| 26  | Seal magnet                      | Rubber magnet           |                           |
| 28  | Cushion needle                   | Rolled steel            | Nickel plated             |
| 31  | Hexagon socket head set screw    | Chrome molybdenum steel | Chromated                 |
| 32  | Hexagon socket head set screw    | Chrome molybdenum steel | Chromated                 |
| 33  | Hexagon socket head cap screw    | Chrome molybdenum steel | Chromated                 |
| 34  | Hexagon socket button head screw | Chrome molybdenum steel | Chromated                 |
| 35  | Hexagon socket button head screw | Chrome molybdenum steel | Chromated                 |
| 36  | Hexagon socket head cap screw    | Chrome molybdenum steel | Chromated                 |
| 37  | Hexagon socket head plug         | Carbon steel            | Chromated                 |

### **Replacement Parts/Seal**

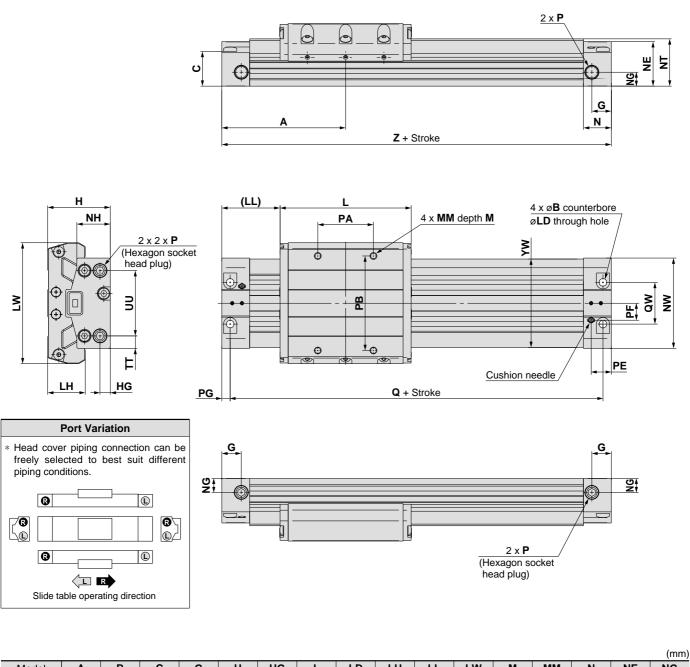
|     |                |                       | -    |                    |                    |                        |                      |  |
|-----|----------------|-----------------------|------|--------------------|--------------------|------------------------|----------------------|--|
| No. | Description    | Material              | Qty. | MY3M16             | MY3M25             | MY3M40                 | MY3M63               |  |
| 9   | Seal belt      | Urethane<br>Polyamide | 1    | MY3B16-16C-Stroke  | MY3B25-16C-Stroke  | MY3B40-16C-Stroke      | MY3B63-16A-Stroke    |  |
| 10  | Dust seal band | Stainless<br>steel    | 1    | MY3B16-16B-Stroke  | MY3B25-16B-Stroke  | MY3B40-16B-Stroke      | MY3B63-16B-Stroke    |  |
| 29  | 0 ring         | NBR                   |      | KA00309            | KA00309            | KA00320                | KA00402              |  |
| 29  | O-ring         | INDK                  | 2    | (ø4 x ø1.8 x ø1.1) | (ø4 x ø1.8 x ø1.1) | (ø7.15 x ø3.75 x ø1.7) | (ø8.3 x ø4.5 x ø1.9) |  |
| 14  | Tube gasket    | NBR                   | 2    |                    |                    |                        |                      |  |
| 15  | Piston seal    | NBR                   | 2    | MY3B16-PS          | MY3B25-PS          | MY3B40-PS              | MY3B63-PS            |  |
| 27  | O-ring         | ring NBR 4            |      | WIT3B10-P3         | WI 1 3623-P3       | WIT3640-P3             | IVI I 3B03-PS        |  |
| 30  | Cushion seal   | NBR                   | 2    |                    |                    |                        |                      |  |

\* Seal kit includes <sup>(1</sup>/<sub>9</sub>, <sup>(1</sup>/<sub>9</sub>), <sup>(2</sup>/<sub>9</sub>) and <sup>(3</sup>/<sub>9</sub>). Order the seal kit based on each bore size. \* Seal kit includes a grease pack (10 g).

\* When () and () are shipped as single units, a grease pack is included (10 g per 1000 strokes). \* Order with the following part number when only the grease pack is needed.

\* Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

\* For instructions on how to replace replacement parts/seals, refer to the operation manual.

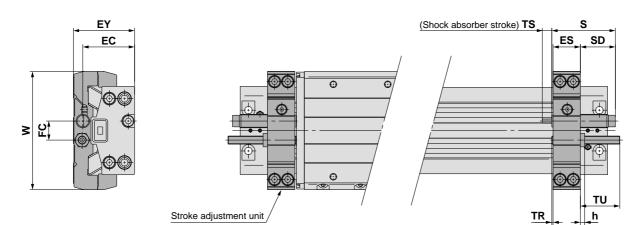



# Mechanically Jointed Rodless Cylinders Series MY3M

# Slide Bearing Guide Type: Ø16, Ø25, Ø40, Ø63

MY3M Bore size - Stroke

\* Refer to "Specific Product Precautions" on front matter 7 for mounting.

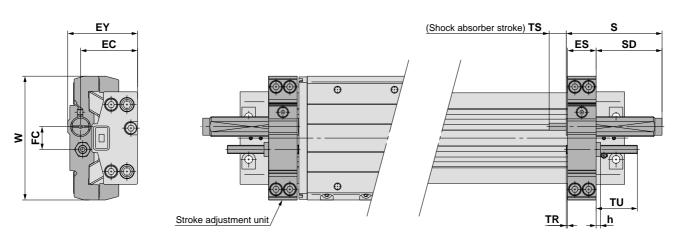



| Model  | Α    | В   | С   | G      | Н       | HG   | L   | LD   | LH   | LL   | LW  | М  | MM        | Ν    | NE   | NG  |
|--------|------|-----|-----|--------|---------|------|-----|------|------|------|-----|----|-----------|------|------|-----|
| MY3M16 | 61   | 6   | 18  | 9.5    | 33      | 5    | 65  | 3.5  | 20.5 | 28.5 | 64  | 6  | M4 x 0.7  | 13.5 | 22.5 | 8   |
| MY3M25 | 89   | 9.5 | 25  | 14     | 45      | 7.4  | 95  | 5.5  | 27   | 41.5 | 87  | 10 | M5 x 0.8  | 20   | 32   | 10  |
| MY3M40 | 138  | 14  | 38  | 18     | 63      | 12   | 160 | 8.6  | 35   | 58   | 124 | 13 | M6 x 1.0  | 27   | 46   | 15  |
| MY3M63 | 178  | 17  | 60  | 20.5   | 93      | 16.5 | 220 | 11   | 46   | 68   | 176 | 15 | M10 x 1.5 | 31   | 70   | 29  |
|        |      |     |     |        |         |      |     |      |      |      |     |    |           |      |      |     |
| Model  | NH   | NT  | NW  | F      | 2       | PA   | PB  | PE   | PF   | PG   | Q   | QW | TT        | UU   | YW   | Z   |
| MY3M16 | 17.2 | 24  | 43  | M5 >   | ¢ 0.8   | 28   | 48  | 9.7  | 8.5  | 4    | 114 | 19 | 6.5       | 30   | 44.6 | 122 |
| MY3M25 | 24   | 34  | 65  | Rc, NP | T, G1/8 | 40   | 68  | 14.5 | 12.2 | 6    | 166 | 30 | 9         | 47   | 63.6 | 178 |
| MY3M40 | 37   | 49  | 94  | Rc, NP | T, G1/4 | 100  | 100 | 19.5 | 16.5 | 8.5  | 259 | 40 | 14        | 66   | 93.6 | 276 |
| MY3M63 | 58   | 76  | 139 | Rc, NP | T, G3/8 | 130  | 150 | 23.5 | 27.5 | 10   | 336 | 64 | 20        | 99   | 138  | 356 |

# Slide Bearing Guide Type: Ø16, Ø25, Ø40, Ø63

### Stroke adjustment unit

Low load shock absorber + Adjustment bolt MY3M Bore size - Stroke L

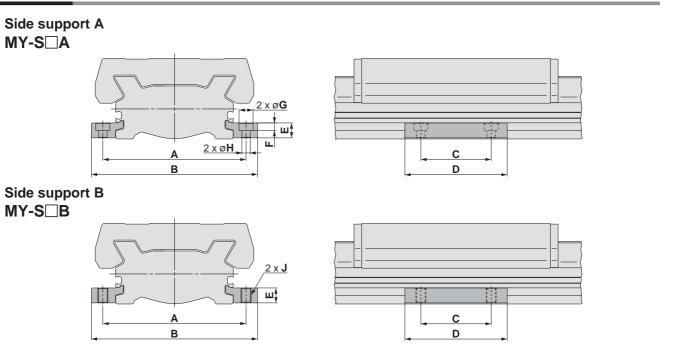



|                                   |      |      |      |    |     |      |      |    |     |                      |     | (mm)   |
|-----------------------------------|------|------|------|----|-----|------|------|----|-----|----------------------|-----|--------|
| Applicable cylinder ES EC EY FC h |      |      |      | S  | SD  | TS   | TR   | TU | W   | Shock absorber model |     |        |
| MY3M16                            | 14.1 | 27.5 | 32.5 | 9  | 2.4 | 40.8 | 25.8 | 6  | 0.9 | 25                   | 64  | RB0806 |
| MY3M25                            | 20.1 | 38   | 44.5 | 14 | 3.6 | 46.7 | 25.2 | 7  | 1.4 | 28.5                 | 87  | RB1007 |
| MY3M40                            | 30.1 | 54   | 62.5 | 24 | 5   | 67.3 | 36.3 | 12 | 0.9 | 39                   | 124 | RB1412 |
| MY3M63                            | 36.1 | 81   | 92.5 | 32 | 6   | 73.2 | 36.2 | 15 | 0.9 | 43                   | 176 | RB2015 |

Note) When the stroke adjustment unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited. Refer to front matter 6 for details.

## Heavy-loaded shock absorber + Adjustment bolt

### MY3M Bore size - Stroke H

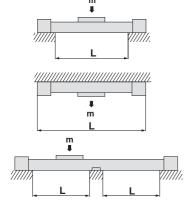



|                     |      |      |      |    |     |      |      |    |     |      |     | (mm)                 |
|---------------------|------|------|------|----|-----|------|------|----|-----|------|-----|----------------------|
| Applicable cylinder | ES   | EC   | EY   | FC | h   | S    | SD   | TS | TR  | TU   | w   | Shock absorber model |
| MY3M16              | 14.1 | 28.5 | 34.5 | 11 | 2.4 | 46.7 | 31.7 | 7  | 0.9 | 25   | 64  | RB1007               |
| MY3M25              | 20.1 | 40   | 49   | 16 | 3.6 | 67.3 | 45.8 | 12 | 1.4 | 28.5 | 87  | RB1412               |
| MY3M40              | 30.1 | 57   | 69   | 26 | 5   | 73.2 | 42.2 | 15 | 0.9 | 39   | 124 | RB2015               |
| MY3M63              | 36.1 | 84.5 | 100  | 32 | 6   | 99   | 62   | 25 | 0.9 | 43   | 176 | RB2725               |

Note) When the stroke adjustment unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited. Refer to front matter 6 for details.

# **SMC**

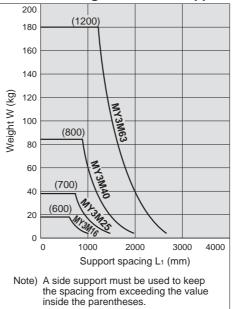
## Side Support




|     |   |     |     | (mm)     |
|-----|---|-----|-----|----------|
| Е   | F | G   | Н   | J        |
| 4.9 | 3 | 6.5 | 3.4 | M4 x 0.7 |
| Q   | 5 | 0.5 | 55  | M6 x 1   |

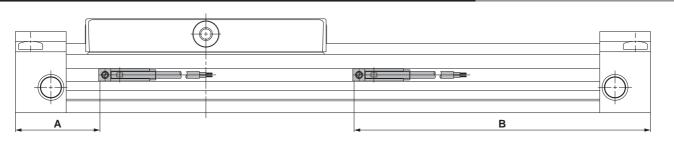
|                                                                               |                     |     |      |    |    |      |   |     |     | (11111)   |
|-------------------------------------------------------------------------------|---------------------|-----|------|----|----|------|---|-----|-----|-----------|
| Model                                                                         | Applicable cylinder | Α   | В    | С  | D  | Е    | F | G   | Н   | J         |
| MY-S16 <sup>A</sup> <sub>B</sub>                                              | MY3M16              | 53  | 63.6 | 15 | 26 | 4.9  | 3 | 6.5 | 3.4 | M4 x 0.7  |
| MY-S25 <sup>A</sup> <sub>B</sub>                                              | MY3M25              | 77  | 91   | 35 | 50 | 8    | 5 | 9.5 | 5.5 | M6 x 1    |
| MY-S32 <sup>A</sup> <sub>B</sub>                                              | MY3M40              | 112 | 130  | 45 | 64 | 11.7 | 6 | 11  | 6.6 | M8 x 1.25 |
| MY-S50 <sup>A</sup> <sub>B</sub> MY3M63 160 182 55 80 14.8 8.5 14 9 M10 x 1.5 |                     |     |      |    |    |      |   |     |     |           |
| Note) A set of side supports consists of a left support and a right support.  |                     |     |      |    |    |      |   |     |     |           |

**Guide for Using Side Support** 


For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right. m



# 


- 1 If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, the use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- ② Support brackets are not for mounting; use them solely for providing support.

### Guide for Using MY3M Side Support



# Series MY3 **Auto Switch Specifications**

# Auto Switch Proper Mounting Position (at Stroke End Detection)



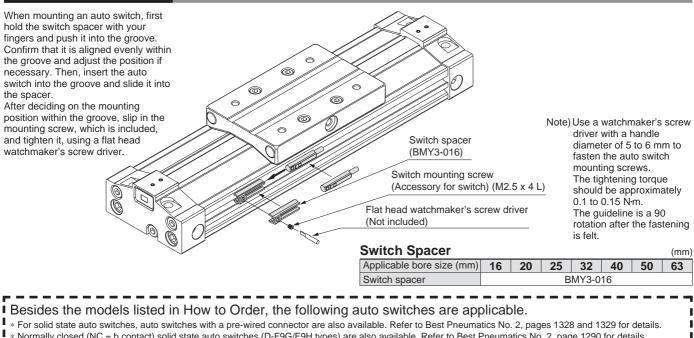
(mm)

### **Auto Switch Proper Mounting Position** MY3A

| Auto switch<br>model | D-M9<br>D-M9<br>D-M9<br>D-M9<br>D-M9<br>D-M9 | □V<br>□W<br>□WV<br>□A | D-A9⊡<br>D-A9⊡V |       |  |  |
|----------------------|----------------------------------------------|-----------------------|-----------------|-------|--|--|
| Bore size            | Α                                            | В                     | Α               | В     |  |  |
| 16                   | 26                                           | 84                    | 22              | 88    |  |  |
| 20                   | 26                                           | 102                   | 22              | 106   |  |  |
| 25                   | 33                                           | 117                   | 29              | 121   |  |  |
| 32                   | 40.5                                         | 152.5                 | 36.5            | 156.5 |  |  |
| 40                   | 46.5                                         | 193.5                 | 42.5            | 197.5 |  |  |
| 50                   | 47                                           | 227                   | 43              | 231   |  |  |
| 63                   | 57.5                                         | 262.5                 | 53.5            | 266.5 |  |  |

Note) The values in the table indicate the position of the auto switch's front end. Adjust the auto switch after confirming the operating conditions in the actual setting.

## **Operating Range**


|                                            |     |     |      |           |    |      | (mm) |
|--------------------------------------------|-----|-----|------|-----------|----|------|------|
| Auto owitch model                          |     |     |      | Bore size |    |      |      |
| Auto switch model                          | 16  | 20  | 25   | 32        | 40 | 50   | 63   |
| D-M9⊒/M9⊒V<br>D-M9⊒W/M9⊒WV<br>D-M9⊒A/M9⊒AV | 3.5 | 5   | 6    | 6.5       | 8  | 8    | 8    |
| D-A9□/A9□V                                 | 6.5 | 9.5 | 10.5 | 12        | 15 | 13.5 | 14   |

\* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed. (Assuming approximately 30% dispersion.) It may vary substantially depending on an ambient environment.

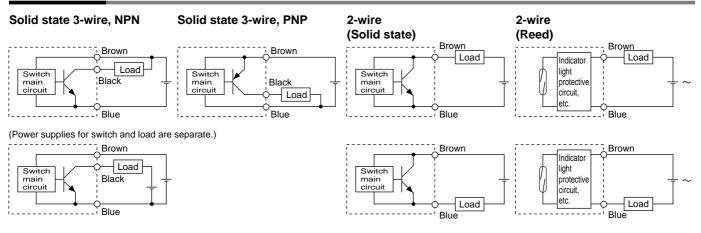
(mm)

\_

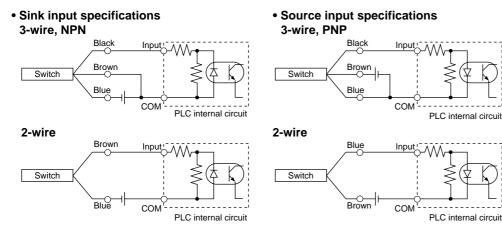
# Auto Switch Mounting



L L \* Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) are also available. Refer to Best Pneumatics No. 2, page 1290 for details. 

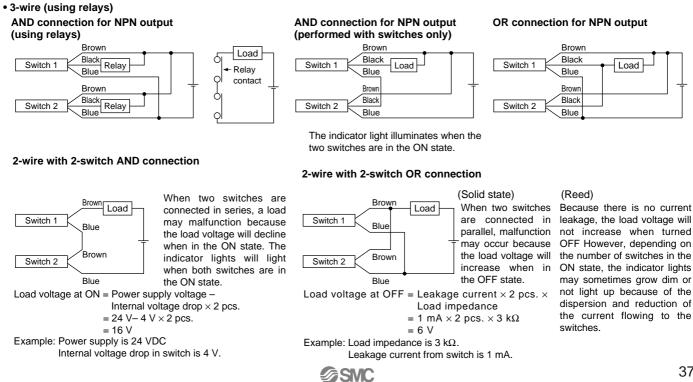

# MY3B/MY3M

| Auto switch model | D-M9<br>D-M9<br>D-M9<br>D-M9<br>D-M9<br>D-M9 | □V<br>□W<br>□WV<br>□A | D-A9□<br>D-A9□V |       |  |
|-------------------|----------------------------------------------|-----------------------|-----------------|-------|--|
| Bore size         | Α                                            | В                     | Α               | В     |  |
| 16                | 32                                           | 90                    | 28              | 94    |  |
| 20                | 36                                           | 112                   | 32              | 116   |  |
| 25                | 47                                           | 131                   | 43              | 135   |  |
| 32                | 56.5                                         | 168.5                 | 52.5            | 172.5 |  |
| 40                | 64.5                                         | 211.5                 | 60.5            | 215.5 |  |
| 50                | 65                                           | 245                   | 61              | 249   |  |
| 63                | 75.5                                         | 280.5                 | 71.5            | 284.5 |  |




# **Prior to Use Auto Switch Connections and Examples**

## **Basic Wiring**




# Examples of Connection to PLC (Programmable Logic Controller)



Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

# Examples of AND (Series) and OR (Parallel) Connection

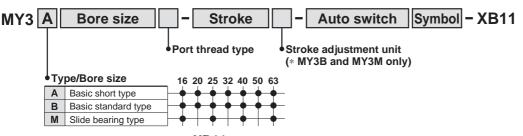


**Series MY3 Made to Order Specifications 1** 



Please contact SMC for detailed dimensions, specifications and delivery lead times.

### Applicable type

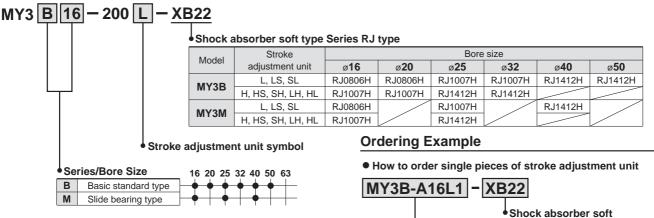

| Cylinder model | Category/Type            | Long stroke | Shock absorber soft type installed | Helical insert<br>thread | Holder<br>mounting bracket | Copper-free |
|----------------|--------------------------|-------------|------------------------------------|--------------------------|----------------------------|-------------|
|                |                          | XB11        | XB22                               | X168                     | X416-X417                  | 20-         |
| MY3A           | Basic short type         | •           | —                                  | •                        | —                          | •           |
| MY3B           | MY3B Basic standard type |             |                                    | •                        |                            | •           |
| MY3M           | Slide bearing type       |             |                                    | •                        |                            | •           |

#### 1 Long Stroke

-XB11

Available with long strokes exceeding the standard strokes. The stroke can be set in 1 mm increments.

Stroke range: 2001 to 3000 mm



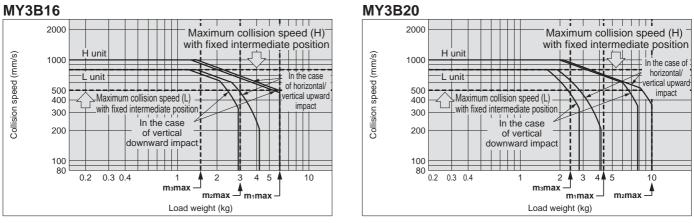

Example) MY3A40-2700-M9B-XB11

## Shock Absorber Soft Type Series RJ Type



The standard cylinder has been equipped with shock absorber soft type Series RJ type to enable soft stopping at the stroke end.




\* For details on shock absorber soft type Series RJ, refer to the catalog (CAT.ES20-200).

Absorption Capacity of Stroke Adjustment Unit

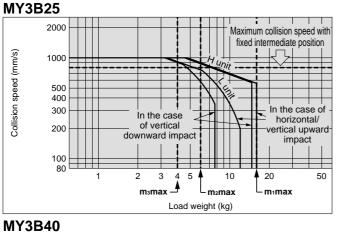


type Series RJ type

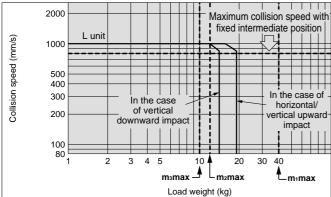
Stroke adjustment unit model Refer to the options table of "How to Order". MY3B→page 15, MY3M→page 31

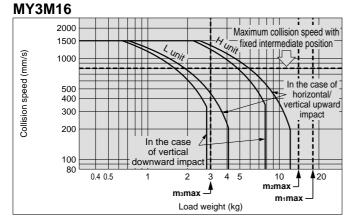


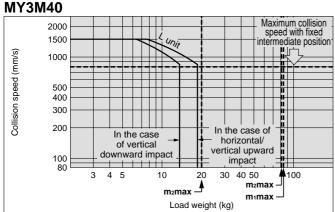
**SMC** 

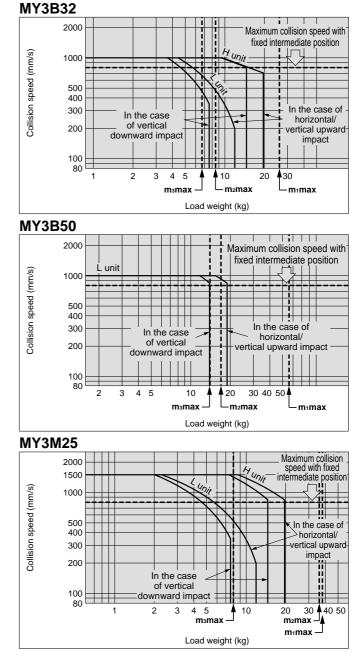

Series MY3 **Made to Order Specifications 2** 

Please contact SMC for detailed dimensions, specifications and delivery lead times.


# 2 Shock Absorber Soft Type Series RJ Type





### Absorption Capacity of Stroke Adjustment Unit

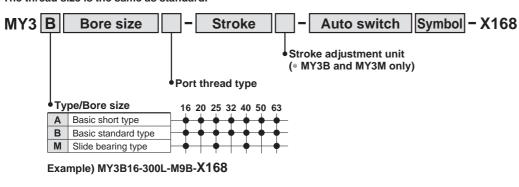










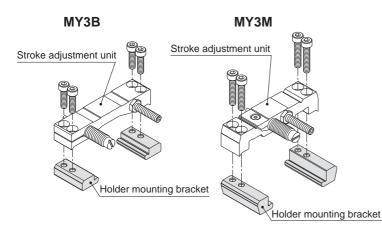

Series MY3 Made to Order Specification 3

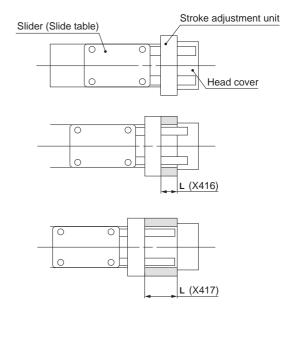
Please contact SMC for detailed dimensions, specifications and delivery lead times.

# **3** Helical Insert Threads

The mounting threads of the slider are changed to helical insert threads. The thread size is the same as standard.







Holder mounting brackets are used to fasten the stroke adjustment unit at an intermediate stroke position. Holder mounting bracket (1) ........-X416 Holder mounting bracket (2) ......-X417

### Fine Stroke Adjustment Range

(Treated as a special order when exceeding the adjustment ranges shown below.) Unit: mm

| Bore   | -X         | 416 (one side)          | -X417 (one side) |                  |  |
|--------|------------|-------------------------|------------------|------------------|--|
| size   | Spacer     | Spacer Adjustment range |                  | Adjustment range |  |
| (mm)   | Length (L) | MY3B/MY3M               | Length (L)       | MY3B/MY3M        |  |
| 16, 20 | 10         | -10 to -20              | 20               | -20 to -30       |  |
| 25, 32 | 12         | -12 to -24              | 24               | -24 to -36       |  |
| 40, 50 | 16         | -16 to -32              | 32               | -32 to -48       |  |
| 63     | 24         | -24 to -48              | 48               | -48 to -72       |  |





-X168

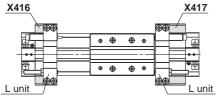
Series MY3 Made to Order Specification 4



Please contact SMC for detailed dimensions, specifications and delivery lead times.

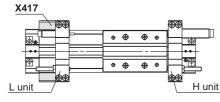
# 

## -X416/X417

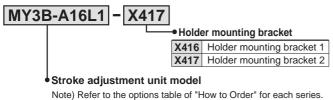

| MY3 B Bore size - 300 L - X416                                                                                                           | Stroke adjustment range                                                                                                                                                                                                           |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Combination symbol<br>Refer to the table below for applicable symbols.                                                                   | 0 -10 -20 -30 -40 -50 -60 -70 -80<br>MY3 16 L unit 0 to 10 to 20 20 to 30<br>0 to 10 to 20 20 to 30<br>0 to 10 to 20 20 to 30                                                                                                     |  |  |  |
| Holder mounting bracket     Refer to the table below for applicable symbols.     Stroke adjustment unit                                  | MY3□20 H unit Standard -X416 -X417<br>MY3□25 L unit 0 to 12 12 to 24 24 to 36<br>UNIT To 12 12 to 24 24 to 36                                                                                                                     |  |  |  |
| Refer to the table below for applicable symbols.<br>• Stroke<br>Note) Indicates the stroke prior to mounting the stroke adjustment unit. | MY3□32         H unit         Standard         -X416         -X417           MY3□40         L unit         0 to 16         16 to 32         32 to 48           MY3□50         H unit         Standard         -X416         -X417 |  |  |  |
| Type/Bore size     16 20 25 32 40 50 63       B     Basic standard type       M     Slide bearing type                                   | MY3□63         L unit         0 to 24         24 to 48         48 to 72           H unit         Standard         -X416         -X417                                                                                             |  |  |  |

| Stroke adjustment    | Holder<br>mounting | Suffix | Mounting pcs. |      | Combination departmention                           |
|----------------------|--------------------|--------|---------------|------|-----------------------------------------------------|
| unit                 | bracket            | Sullix | X416          | X417 | Combination description                             |
| L, H, LS, SL, HS, SH |                    | _      | 1             |      | X416 on one side * Note 2)                          |
| L, H                 |                    | W      | 2             |      | X416 on both sides                                  |
| с, п                 |                    | Z      | 1             | 1    | X416 on left side, X417 on the other side * Note 2) |
|                      | X416               | L      | 1             |      | X416 on L unit side                                 |
|                      |                    | Н      | 1             |      | X416 on H unit side                                 |
| LH, HL               |                    | LZ     | 1             | 1    | X416 on L unit side, X417 on the other side         |
|                      |                    | HZ     | 1             | 1    | X416 on H unit side, X417 on the other side         |
| L, H, LS, SL, HS, SH |                    | _      |               | 1    | X417 on one side * Note 2)                          |
| L, H                 | X417               | W      |               | 2    | X417 on both sides                                  |
| LH, HL               | A417               | L      |               | 1    | X417 on L unit side                                 |
| LII, NL              |                    | Н      |               | 1    | X417 on H unit side                                 |

Note 1) For LS, SL, HS and SH, the stroke adjustment unit is mounted on one side only. Note 2) The stroke adjustment unit is installed on the left side (or right side in case of SL and SH) at the time of shipment. It can however be moved to the right side (or left side).


### **Ordering Example**

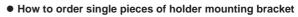
• L units with one each of X416 and X417 MY3B25-300L-X416Z

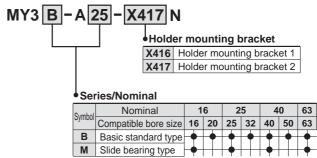



 L and H units, where X417 is mounted on L unit only and nothing on H unit

MY3B25-300LH-X417L




• How to order single pieces of stroke adjustment unit




Note) Refer to the options table of "How to Order" for each series.  $MY3B \rightarrow$  Page 15,  $MY3M \rightarrow$  Page 31

Example) MY3B-A25L1-X416

(Left side L unit of MY3B25 and X416 bracket)



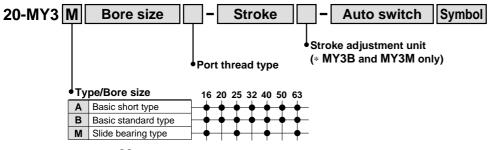


Note) The holder mounting bracket can be used on both the left and right side of the L and H units.

### Example) MY3B-A25-X416N

(X416 bracket for L and H units of MY3B25, 32)




Series MY3 Made to Order Specification 5 Please contact SMC for detailed dimensions, specifications and delivery lead times.



20-

# 5 Copper-free

For copper-free applications



Example) 20-MY3M25-300-M9B

# **▲** Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "**Caution**," "**Warning**" or "**Danger**." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)<sup>\*1</sup>, and other safety regulations.



### **Safety Instructions** Be sure to read "Handling Precautions for SMC Products" (M-E03-3) before using.

#### SMC Corporation (Europe)

| ene eerperanen (p) |                |                                                |                      |                        |             |                            |                         |                           |
|--------------------|----------------|------------------------------------------------|----------------------|------------------------|-------------|----------------------------|-------------------------|---------------------------|
|                    | Austria        | <b>2 +43 2262622800</b>                        | www.smc.at           | office@smc.at          | Lithuania   | 🕿 +370 5 2308118           | www.smclt.lt            | info@smclt.lt             |
|                    | Belgium        | <b>2 +32 (0)33551464</b>                       | www.smcpneumatics.be | info@smcpneumatics.be  | Netherlands | 🕿 +31 (0)205318888         | www.smcpneumatics.nl    | info@smcpneumatics.nl     |
|                    | Bulgaria       | 🕿 +359 29744492                                | www.smc.bg           | office@smc.bg          | Norway      | <b>2 +47 67129020</b>      | www.smc-norge.no        | post@smc-norge.no         |
|                    | Croatia        | <b>2 + 385 13776674</b>                        | www.smc.hr           | office@smc.hr          | Poland      | 🕿 +48 222119600            | www.smc.pl              | office@smc.pl             |
|                    | Czech Republic | <b>2 +</b> 420 541424611                       | www.smc.cz           | office@smc.cz          | Portugal    | 🕿 +351 226166570           | www.smc.eu              | postpt@smc.smces.es       |
|                    | Denmark        | <b>2 + 45 70252900</b>                         | www.smcdk.com        | smc@smcdk.com          | Romania     | 🕿 +40 213205111            | www.smcromania.ro       | smcromania@smcromania.ro  |
|                    | Estonia        | <b>2 + 372 6510370</b>                         | www.smcpneumatics.ee | smc@smcpneumatics.ee   | Russia      | 🕿 +7 8127185445            | www.smc-pneumatik.ru    | info@smc-pneumatik.ru     |
|                    | Finland        | <b>2</b> +358 207513513                        | www.smc.fi           | smcfi@smc.fi           | Slovakia    | 🕿 +421 413213212           | www.smc.sk              | office@smc.sk             |
|                    | France         | <b>2 +33 (0)164761000</b>                      | www.smc-france.fr    | contact@smc-france.fr  | Slovenia    | 🕿 +386 73885412            | www.smc.si              | office@smc.si             |
|                    | Germany        | <b>2 + 49 (0)61034020</b>                      | www.smc-pneumatik.de | info@smc-pneumatik.de  | Spain       | 🕿 +34 945184100            | www.smc.eu              | post@smc.smces.es         |
|                    | Greece         | 🕿+30 210 2717265                               | www.smchellas.gr     | sales@smchellas.gr     | Sweden      | 🕿 +46 (0)86031200          | www.smc.nu              | post@smcpneumatics.se     |
|                    | Hungary        | <b>2</b> +36 23511390                          | www.smc.hu           | office@smc.hu          | Switzerland | <b>2 +41 (0)523963131</b>  | www.smc.ch              | info@smc.ch               |
|                    | Ireland        | <b>2</b> +353 (0)14039000                      | www.smcpneumatics.ie | sales@smcpneumatics.ie | Turkey      | <b>2 +90 (0)2124440762</b> | www.entek.com.tr        | smc@entek.com.tr          |
|                    | Italy          | <b>2</b> +39 (0)292711                         | www.smcitalia.it     | mailbox@smcitalia.it   | UK          | 🕿 +44 (0)845 121 5122      | www.smcpneumatics.co.uk | sales@smcpneumatics.co.uk |
|                    | Latvia         | <b>2 1</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | www.smclv.lv         | info@smclv.lv          |             |                            |                         |                           |
|                    |                |                                                |                      |                        |             |                            |                         |                           |

 SMC CORPORATION
 Akihabara UDX 15F, 4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN Phone: 03-5207-8249
 FAX: 03-5298-5362

 1st printing OO printed in Spain
 Specifications are subject to change without prior notice and any obligation on the part of the manufacturer.